
Interpretable Machine Learning Approaches for
Golf Swing Analysis

Solomon Thiessen
D-INFK

ETH Zurich
Zurich, Switzerland

sthiessen@ethz.ch

Abstract—This work demonstrates the feasibility of providing
actionable feedback to golfers based on predictive black-box
models, with implications for deployable coaching systems. We
evaluated preprocessing strategies, feature selection methods, and
multiple model architectures to predict clubhead speed from
snapshot-based kinematic measurements in golf swings. Our
dataset comprised 424 usable trials from four shipments of golf
swing data supplied by an industry partner. We transformed
time-series kinematic and kinetic measurements into tabular
features at four critical swing phases: takeaway, top of back-
swing, beginning of downswing, and impact. Models evaluated
included LSTMs (on raw time-series), ridge regressors, XGBoost
regressors, fully connected neural networks, and heterogenous
ensembles. A nested cross-validation pipeline with Optuna pa-
rameter optimization was used, with Variance Inflation Factor
(VIF ≤ 5) filtering to control multicollinearity and enable model
interpretation. The best model was a stacked ensemble of all
three base-learners achieving mean RMSE of 4.311 ± 0.427 mph.
Interpretability analyses using permutation feature importance,
partial dependence plots (PDPs), individual conditional expecta-
tion (ICE) curves, accumulated local effects (ALE) plots, LIME,
SHAP, and other techniques revealed that temporal features
and rate-kinematics often dominated importance rankings, while
static-kinematic models provided more mechanistic insights.

Index Terms—golf, machine learning, interpretability

I. INTRODUCTION

Golf swing analysis has traditionally relied on qualitative
coaching techniques and subjective visual evaluation. Few
studies specifically address this; some prior works use IMU or
other sensor data to classify golf swings into categories like
“Straight” or “Pull Hook” [18], [19], segment individual golf
swings into phases [22], or classify swing path as “Inside-
Out”, “Outside-In”, or “Straight” [5]. Other works use video
data as input for various tasks, including the aforementioned
swing segmentation task [12], [27]. One hallmark work [27]
provided a database of segment-labeled videos for future
experimentation. This database was later used in combination
with musculoskeletal modeling to learn quantized latent swing
representations that can be leveraged for various downstream
tasks [25]; notably, one such task is the detection of low-
likelihood latent tokens (according to the learned codewords)
followed by masking and conditionally resampling these to-
kens to reconstruct a swing that is closer to the training
manifold, such that the difference between the original and
reconstructed swing may be used as a form of swing coach-
ing. A separate study [20] used video footage from golfers

registered on the PGA tour to learn swing embeddings and
subsequently employed a similarity metric to determine the
maximal difference between an input swing and that of the
“nearest” professional as a form of coaching feedback.

Most prior works are concerned with segmenting or classify-
ing swings [5], [12], [18], [19], [22], [27]. Notably, prior works
that incorporate golfer kinematics are outcome-agnostic; the
coaching feedback they provide is not with regard to particular
swing outcomes, but instead aims to align user swings with
those of professionals [20], [25].

This study addresses the problem of predicting swing out-
comes from snapshot-featurized kinematic and kinetic data,
with the goal of using interpretability tools to identify influ-
ential features and estimate the direction and magnitude of
their effects on outcomes, allowing us to provide actionable
feedback to athletes. Due to the lack of availability of labels
for other outcomes, our approach is constrained to predicting
and explaining clubhead speed.

The motivation for this work stems from the need to democ-
ratize high-quality golf instruction by developing interpretable
models that can provide specific biomechanical recommen-
dations without relying on expensive and time-consuming 1-
on-1 coaching. By focusing on kinematic measurements that
can be obtained through accessible means such as a two-
camera system, we aim to create a golfer-directed framework
for actionable coaching feedback.

Our research questions include: (1) Can snapshot-based
kinematic features effectively predict clubhead speed? (2)
Which kinematic features and swing phases are most predic-
tive of performance? (3) How do different feature groups (tem-
poral, rate-kinematic, kinetic) contribute to model performance
and interpretability?

II. METHODS

A. Data

The dataset for this study was supplied by an industry
partner [1] as four shipments (v1–v4) and originally contained
a total of 903 motion-capture trials following partner-side
quality filtering. After applying our own inclusion criteria
(see below), 424 trials remained for analysis. Each trial
contains time-series kinematic measurements (joint angles
and displacements), vendor-provided rate-kinematic quantities
(angular velocities), force-plate kinetics, and metadata such



Fig. 1. Critical positions as specified by keyframes

as club class and handedness. A full breakdown of features
included in our study can be found in Appendix C. Original
video footage was not provided for privacy reasons.

Kinematic information was collected using a two-camera
setup, with one camera positioned to record down-the-line
(DTL) and the other face-on. All cameras used to collect data
for this study recorded 240 frames per second.

Kinetic information was collected using force plates, pro-
viding 3-dimensional force components for each foot, for each
frame at 240 frames per second.

Other important information was included with each sample,
such as keyframes indicating when the golfer reached each of
the 10 critical positions pictured in Figure 1. Notably, infor-
mation about golfer skill-level, height, weight, limb lengths,
exact club type, and many swing outcomes were absent.

Due to the lack of consistently available swing outcome
measurements, the primary swing outcome to predict (and
subsequently explain) throughout this study is clubhead speed,
as this was the most consistently labeled outcome across trials.
Intended future targets include spin rate, carry distance, and
offline distance as more labeled data becomes available.

1) Inclusion and exclusion criteria: Trials were considered
usable if they satisfied the following criteria:

1) Motion-capture sequence accepted by our partner (re-
ported calibration score of 4 or 5 on their 5-point scale).
This criterion is opaque to the research team.

2) Contained complete kinematic measurements for the re-
quired body segments (head, upper torso, pelvis, elbows,
wrists, knees).

3) Labeled as ‘iron’ (we excluded wedges and drivers
due to heterogeneity and low sample counts: ∼ 10
driver/wedge trials total).

4) Recorded clubhead speed without defects; trials with
no clubhead speed or a recorded 0 clubhead speed
(indicating motion capture failure) were excluded.

5) Right-handed golfer.

Typical reasons for exclusion included missing body-
segment kinematics (e.g., knees, elbows, wrists), partner-side
calibration failure, missing clubhead speed label, and left-
handed orientation. Table I reports the counts per shipment
and the number of usable trials after applying the inclusion
criteria.

TABLE I
PER-SHIPMENT TRIAL COUNTS AND USABILITY.

Shipment Total trials Usable trials Primary
exclusion reasons

v1 308 0 missing
knees/elbows/wrists

v2 290 169 calibration
failure, missing
clubhead speed

v3 144 122 calibration
failure, missing
clubhead speed

v4 161 133 calibration
failure, missing
clubhead speed

Total 903 424 —

2) User identifiers and uniqueness: The dataset is labeled
by only 33 unique de-identified user IDs. Among the usable
swings, there are only 25 unique user IDs. The median number
of swings per user ID is 7, the maximum is 180, and the
minimum is 1. Importantly, the user IDs are associated with
systems rather than verified individual golfers; the same ID
may represent multiple different golfers over time (or the same
golfer across sessions), and we cannot reliably assert per-
golfer identity. This ambiguity motivated the dual CV strategy
described below (trial-level k-fold and group k-fold by ID),
and it is discussed as a limitation in the Section IV-A4. For
a visualization of the variability in swings between user IDs,
see Appendix A-D1.

3) Known partner-side opacity: Several data-generation
details are opaque to the research team because they were
performed by the industry partner (vendor). Specifically: the
partner applied their own calibration scoring (only trials with
score 4 or 5 were delivered) and the numeric definition of that
score is not available to us, all kinematics were supplied as
pre-computed by proprietary software, and force-plate signals
were provided at the same rate as kinematic measurements
meaning that the partner may have applied their own resam-
pling/interpolation prior to delivery.

We explicitly call out these opacities because they limit
the reproducibility of low-level signal-processing steps. Nev-
ertheless, all steps performed within our codebase are reported
below.

B. Preprocessing and featurization

1) Coordinate frames and normalization: Joint angles and
displacements are provided in a golfer-relative coordinate
frame as delivered by the partner. Height, limb lengths, and
other anthropometrics were not provided. As a result, all
kinematic quantities are reported in their raw units (degrees



for angles, centimeters for displacements). Again, a full break-
down is available in Appendix C. We did not perform subject-
level normalization by height or limb lengths due to lack of
metadata.

2) Signal alignment and frame indexing: All camera-
derived kinematic signals are indexed at 240 Hz according to
the partner’s delivery. The partner also supplied force-plate
components per recorded frame. Each trial is delivered as a
720-frame recording window; however, the kinematic swing
segment supplied for a trial typically spans only 300–500
frames within that window. We aligned per-trial kinematic
segments to the force-plate data using the partner-provided
keyframe corresponding to the first critical position (P1) which
is reported relative to the start of the 720-frame recording.

3) Snapshot featurization: While models trained on raw
time-series may achieve strong predictive performance, they
are less interpretable for feature-effect estimation due to cor-
relations between consecutive time steps. Nonetheless, we still
experimented with time-series based models to establish pre-
dictive performance benchmarks. Then, to meet interpretabil-
ity requirements, we transformed the time-series data into
snapshot-based tabular features at salient swing phases to be
used as input to models accepting tabular data. As mentioned
previously, the frames of critical swing phases were provided
by the partner’s markerless computer-vision pipeline and are
based on shaft angle and position derived from the face-on
camera (see Figure 1). Because these phase labels are vendor-
provided, we treat them as ground-truth keyframes for the
snapshot featurization.

Four critical swing phases were selected for feature extrac-
tion based on golfer familiarity1:

1) Takeaway: Start of backswing (P2)
2) Backswing: Maximum backswing position (P4)
3) Downswing: Transition from backswing to downswing

(P5)
4) Impact: Club contact with ball (P7)
Each snapshot contained the following measurements, yield-

ing a fixed-length feature vector per trial. Further detail on
each feature is provided in Appendix C.

• Joint angles and displacements for head, upper torso,
pelvis, left/right elbows, lead wrist, left/right knees;

• Vendor-provided angular velocities for the tracked seg-
ments (rate-kinematics);

• Force-plate components (Fx, Fy, Fz) per side.
4) Feature sets evaluated: Table II shows the various

feature sets used in our experimentation. The reasoning behind
experimenting with different feature sets is as follows: in
the context of predicting clubhead speed, temporal and rate-
kinematic features often dominate model importance and lead
to “obvious” feedback (e.g., “to increase clubhead speed,
rotate pelvis faster at impact” or “shorten downswing time”).
Since the research goal is to extract actionable mechanical

1We understand that this particular set of positions is somewhat arbitrary;
further study into the most interpretable positions as perceived by golfers may
be warranted.

TABLE II
FEATURE SET DEFINITIONS. EACH SET IS THE UNION OF THE LISTED

COMPONENTS ACROSS THE FOUR SNAPSHOTS.

Label Components included (per snapshot)
B Joint angles and displacements (head, torso, pelvis, elbows,

wrists, knees)
B+F B + force-plate components (Fx, Fy, Fz per leg)
B+T B + temporal features (e.g., frame differences between

each consecutive phase i.e. takeaway-backswing, backswing-
downswing, downswing-impact)

B+T+S B+T + rate-kinematics (angular velocities at snapshots)
B+T+S+F B+T+S + kinetics (force-plate features)

recommendations, we systematically evaluated models both
with and without these features. Additionally, kinetic fea-
tures require force-plate instrumentation not available in all
coaching settings (such as on-grass driving ranges), making
kinematics-only models preferable for deployability. In an
ideal world, models trained only with body segment angles
and displacements would have the best predictive performance
since they offer the most insightful interpretations and use the
most accessible data. Unfortunately, as we will show later, this
was not our finding.

C. Feature selection and collinearity control

1) Standardization: The first step in our feature selection
process is z-score normalization. Adhering to best practices in
machine learning to avoid data leakage, we made sure to fit
standardization transforms on training data only. Standardiza-
tion was done to improve optimizer convergence and ensure
an even playing field for all features, regardless of original
scale.

2) Variance inflation factor (VIF) filtering: Since highly
correlated features provide the same underlying information to
a machine-learning model, it may use an arbitrary combination
of such features to make predictions. This obscures the true
effect size of the jointly-encoded information. To satisfy neces-
sary conditions for the interpretability of model predictions, we
applied recursive VIF-based feature filtering. The procedure is
as follows:

1) Compute VIF values for all candidate features on the
training split (after standardization).

2) Remove the feature with the highest VIF.
3) Recompute VIFs on the reduced set and repeat until the

maximum VIF is below the generally accepted threshold
[21] VIF < 5.

This recursive procedure yields a smaller, less-collinear feature
set. Depending on the feature set, the retained feature count
was typically on the order of 30-45 features. For a breakdown
of the effect of VIF filtering on collinearity and dimensionality,
see Appendix D.

3) Dimensionality reduction (DR): Since training dataset
size was severely limited, techniques to reduce the dimen-
sionality of the data in feature space were considered. Such
techniques can help prevent the overfitting phenomenon that
occurs when an overparameterized model (like a neural net-
work) simply memorizes its training data rather than learning



the relationship between inputs and targets [36]. This effect
of reducing overfitting is due to the fact that dimensionality
reduction techniques provide a model with a sparser latent
representation of each data point that has less noise and
variance, making it more difficult to find and fit to small non-
generalizable idiosyncrasies [6], [17].

Another reason to consider such techniques is the limited
sample size of our study. Depending on the training split, the
VIF filtering protocol described previously may leave ∼ 45
features for a total of ∼ 400 swings. Even for linear models, a
rule of thumb is to have at least 10–20 data points per feature.
This recommendation is likely optimistic and increases for
non-linear models like neural networks [3], further motivating
techniques to reduce input dimension.

With this reasoning established, we considered two ways to
reduce dimensionality from the original set.

a) Principal component analysis (PCA): PCA [28] was
used as a linear dimensionality-reduction step in pipelines for
linear models. The number of principal components retained
was treated as a hyperparameter. PCA projections were applied
to test partitions using the training-derived PCA transform.

b) Autoencoder: The other technique is the autoencoder
[13], trained and deployed jointly with a neural network
regressor. The autoencoder is a separate neural network that
learns a latent representation of the data by minimizing the
reconstruction loss. In particular, it is made of an encoder
and a decoder, where the encoder consists of a variable
number of hidden layers each of variable width arranged in
a narrowing configuration while the decoder consists of the
same but arranged in a widening configuration. The output of
the encoder is the narrowest layer (bottleneck layer), which
produces the latent representation of the data point. This
latent representation is fed in parallel to the regression head
of the neural network and the decoder. The output of the
decoder has the same dimension as the original data point
and is ideally identical to the input. By jointly minimizing the
regression and reconstruction losses with a tuneable weighting,
the autoencoder should learn a latent representation of the data
that is particularly useful for regression. This serves the dual
purpose of reducing dimensionality and improving regressor
learning. The joint loss used during training was:

Ltotal = Lreg + λrec Lrec,

where Lreg is the regression loss (MSE or MAE, chosen as
a hyperparameter), Lrec is the reconstruction loss (MSE), and
λrec is a tunable hyperparameter. The autoencoder architecture
parameters (number of encoder/decoder layers, bottleneck
dimension, encoder/decoder layer widths, and dropout proba-
bility) and λrec were optimized via nested cross-validation.

c) Other feature engineering strategies tested: We also
experimented with scikit-learn’s [31] LassoCV feature se-
lection to select a small subset of raw features (e.g., 10–20
features). This approach was ultimately discarded because it
substantially degraded predictive performance in our experi-
ments. Reported results thus do not include the Lasso-selected
pipelines.

D. Models and architectures
We evaluated a diverse set of model families to characterize

the performance vs. interpretability trade-off between simple
linear models, tree-based ensembles, and neural-network ap-
proaches. All model families listed below were subject to
parameter optimization by Optuna [2] in the inner-loop of our
nested cross-validation procedure.

1) Model families: A full breakdown of the parameter
search space by model type can be found in Appendix B.

a) Long short-term memory networks (LSTM): Long
short-term memory networks (LSTMs) [14] were trained on
raw time-series inputs as a time-series based baseline. LSTMs
were evaluated only with trial-level k-fold (not group k-fold)
and were used primarily to demonstrate the potential perfor-
mance of full time-series models relative to snapshot-based, in-
terpretable pipelines. Using the PyTorch [30] implementation,
hyperparameters tuned included number of layers (1–3), hid-
den dimension ∈ {32, 64, 128}, dropout with p ∈ [0, 0.5] [37],
learning rate (log-uniform [10−4, 10−1]), weight regularization
strength (log-uniform [10−3, 10−1]), batch size ∈ {32, 64},
and loss type ∈ {MSE,MAE}. LSTMs used an internal
validation split of 20% of training data for early stopping
with patience ∈ {20, 50, 80, 150, 250, 500} and maximum
epoch count of 1000. Optimization was done with the Adam
optimizer [23] as implemented in PyTorch. LSTM experiments
explored permutations of feature modalities including B, B+S,
and B+F+S.

b) Ridge Regressors: Ridge regression [15] served as a
simple, interpretable linear baseline. We used the scikit-learn
[31] implementation with regularization strength α, which was
tuned over a log-uniform range [10−3, 103]. When used with
dimensionality reduction (PCA), we retained a number of
components in the range [3, 20].

c) XGBoost: XGBoost [7] provided a strong tree-based
non-linear baseline. Tuned hyperparameters included number
of estimators (50–300), maximum tree depth (3–15), learning
rate η (log-uniform [10−3, 0.3]), and evaluation metric as one
of (MSE, MAE).

d) Fully-connected neural networks: Feedforward MLPs
with ReLU activations [10], batch normalization [16] and
dropout [33] were used as flexible non-linear regressors.
Schematic diagrams are provided in Appendix A-A. As with
the LSTM, we implemented our network in PyTorch [30].
Hyperparameters optimized included number of layers (3–8),
layer widths ∈ {128, 256, 512}, weight regularization strength
(log-uniform [10−3, 10−1]), dropout with p ∈ [0, 0.5], learn-
ing rate (log-uniform [10−4, 10−1]), batch size ∈ {32, 64},
and loss type ∈ {MSE,MAE}. When used with dimen-
sionality reduction (jointly trained autoencoder, see Figure
11 in Appendix A-A), the symmetric autoencoder used the
following hyperparameter ranges: dropout with p ∈ [0, 0.3],
number of encoder/decoder layers (1–3), bottleneck dimen-
sion ∈ {4, 8, 12, 16}, and reconstruction loss weight λrec ∈
[0.1, 1.0]. All networks used a maximum epoch cap of 2000
with early stopping; early stopping patience was treated as
a tunable hyperparameter ∈ {50, 80, 100, 150, 2000} in the



Optuna search space, with all models using a 20% internal
validation split to determine the early stopping point. Again,
the Adam optimizer [23] was used.

e) Ensembles: Two ensembling strategies were evalu-
ated:

1) Voting: Model voting takes a weighted average of base
model predictions to get a final prediction [8]. The
voting weights were learned using each base model’s
out-of-fold (OOF) predictions from the outer 5-fold loop
of our nested cross-validation procedure. This approach
is class and lightweight in that the output is simply a
vector of weights that can be applied via dot product
to the base model predictions to produce the ensemble
prediction.

2) Stacking: we trained a meta-learner on the pre-
dictions of the base models [35]. Scikit-learn’s
StackingRegressor was used with a Ridge fi-
nal estimator (meta-learner). Stacking was trained
with 5-fold CV to produce meta-features (base model
OOF predictions) with each base estimator using the
optimal parameters found during tuning. Note that
StackingRegressor does not reuse the previously
trained models; instead, it fits fresh copies of the base
estimators as part of the stacking process.

Both ensembling approaches were applied in the outer
cross-validation procedure, i.e. base models were first opti-
mized via inner CV then ensembled with fixed parameters.

E. Cross-validation (CV) and hyperparameter tuning

1) Nested cross-validation protocol: We used nested cross-
validation for unbiased model selection and performance esti-
mation. The outer procedure employed 5-fold cross-validation
to estimate generalization performance, while the inner pro-
cedure used 3-fold cross-validation for hyperparameter opti-
mization with Optuna. Each inner Optuna study comprised 40
trials.

For each outer fold:
1) The inner Optuna study selected hyperparameters by

optimizing mean MSE across the 40 trials of 3 inner
folds each.

2) The best hyperparameter configuration was used to
retrain the model on the full outer training partition.

3) The retrained model was evaluated on the outer test
partition to produce the outer-fold performance estimate.

Reported metrics are means and standard deviations across the
outer folds.

2) Alternative splitting strategies: To probe robustness to
distributional shift between user IDs, we also evaluated group
k-fold by ID. Here, folds were formed so that all trials from
a given de-identified user are contained in one fold. The
grouping was applied to both the outer and inner procedures.

3) Leakage control: All feature engineering and selection
steps (standardization, VIF filtering, PCA fitting, LassoCV,
and autoencoder training) were fit strictly on training data in-
side the corresponding CV loop and applied to the testing data

at inference. Ensemble training used only OOF predictions
derived from the training folds.

F. Interpretability methods

Our interpretability goals were twofold: (1) identify the
most important kinematic predictors of clubhead speed and
(2) estimate the direction and magnitude of feature effects in
ways that are robust to residual correlation and limited sample
size. Below we describe the suite of methods used, the precise
implementation choices, and validation procedures employed
to assess the reliability of explanations.

For interpretability evaluation, one final model per model
class per feature set was trained on a 90/10 train/test split.
The reasoning behind this methodology is to provide the
most wholesome explanations possible by using the largest
proportion of the available data for training while still main-
taining some holdout data for testing and validation. This is
better than cherry-picking a particular fold’s model from the
nested CV procedure for two reasons: first, it avoids optimistic
overestimation of model utility introduced by cherry-picking
and second, it allows us to interpret a model that is more
robust due to the larger training set. Of course this approach
is susceptible to overfitting to the particular 90/10 split used,
so the predictive performance of these models is to be taken
with a grain of salt. In the end, a singular model is required for
interpretation and due to the limited dataset size, this model
is subject to some variance.

1) Permutation feature importance (PFI): Permutation im-
portance [9] measures the increase in prediction error when
a single feature’s values are randomly permuted among the
dataset. We compute permutation importance for both the
train and test sets. A feature’s importance is measured by
the increase in loss across the dataset after permutation. Our
implementation uses n_repeats = 30, meaning that the
random permutation is repeated 30 times. We then report the
mean ± std of importance across repeats. As a noteable limita-
tion, permutation importance can be biased when features are
strongly correlated (though in our case, this should be mostly
mitigated by the VIF filtering procedure (Section II-C1))

2) Ceteris paribus plots: Ceteris paribus plots (single-
sample marginal feature effect plots) show how the model
prediction for a specific swing would change when varying the
value of a particular feature while holding others fixed. They
are in effect singular curves extracted from an ICE plot [29].
These are particularly useful for personalized coaching rec-
ommendations. Our implementation uses a 100-point evenly
spaced grid between the min and max values per feature. As a
limitation, holding other features fixed may produce unrealistic
combinations when dependencies exist.

3) Partial dependence plots (PDPs) and individual con-
ditional expectation (ICE) curves: PDPs approximate the
average marginal effect of a feature by averaging the model
predictions over the empirical distribution of the other features.
ICE curves show the same effect for individual samples and
thus reveal heterogeneity [11]. Again, for both methods, we
use a 100-point evenly spaced grid between the min and



max values per feature. To provide some intuition, PDPs
present the mean of ICE curves. ICE curves are shown as
a rug of individual lines. As a limitation, PDPs assume
feature independence; when features are correlated PDPs can
produce misleading extrapolations. See Section II-F4 below
for a method robust to correlated inputs.

4) Accumulated local effects (ALE): Because some snap-
shot features remain correlated even after VIF filtering, we
include ALE plots [4] as an alternative to PDPs. ALE estimates
the local (conditional) effect of a feature by computing small
finite-difference effects within narrow conditional bins and
accumulating them. This avoids the unrealistic marginalization
PDP performs under correlated covariates [29]. We use the
Alibi implementation [24] and enforce a minimum of 4 bins
per feature, although with more data more bins may be
necessary for largely variable features.

5) LIME: LIME fits a local interpretable surrogate (in
our case a linear model) in the neighborhood of a pre-
diction to explain local behavior [32]. LIME uses training-
data-based perturbations to populate the local neighborhood
(we use the training partition as the sampling basis). To
this end, the kernel width and sampling method are impor-
tant considerations and vary case-by-case. LIME is partic-
ularly sensitive to hyperparameters so one must be careful
in interpreting results. We used the standard kernel width
of 3

4 ×
√

num features with sample_around_instance
set to false and discretize_continuous set to true
(mostly for visualization convenience). To avoid overwhelming
a potential user, we limited the number of features used in the
explanation to 5.

6) SHAP (SHapley Additive ExPlanations): SHAP at-
tributes an instance’s prediction to feature contributions based
on Shapley values from cooperative game theory [26]. We
use KernelSHAP for all explanations presented in this paper.
We use shap.kmeans applied to the training partition with
k = 10 clusters to construct a compact background summary,
which reduces KernelSHAP variance and accelerates compu-
tation.

7) Counterfactual explanations: We generate counterfac-
tuals [34] using Alibi’s CounterfactualProto imple-
mentation [24] to propose minimal actionable changes that
would achieve a desired clubhead speed target. Their imple-
mentation minimizes a 5-component loss, including terms to
penalize counterfactuals that are: not sparse enough, too far
from the training manifold, and of course not meeting the
desired criterion (i.e. clubhead speed > 75). It requires an
encoder, and since our dimensionality reduction techniques
are not applied globally (i.e. they are specific to model class),
we set use_kdtree=True to allow alibi to prototype in-
stances. We zero out feature changes with magnitude less than
1
4 · feature std. For hyperparameters, we used β = 0.4, θ =
0.1, γ = 10 which are the weights for the L1 penalization,
prototype penalization, and L2 reconstruction losses respec-
tively. We set ϵstep = 1

4 · feature std to facilitate reason-
able numerical gradient descent steps. We constrained feature
ranges to the ranges observed in our training data to preserve

physical plausibility. We used c_init=100, c_steps=4,
max_iterations=500. For each query swing we return
the counterfactual feature vector, the predicted speed under the
counterfactual, and the produced sparse delta vector including
features changed and magnitudes. A notable limitation is that
counterfactuals may alter features in unrealistic or unlikely
ways leading to recommendations for unattainable positions.
This effect is limited by a term in the loss seeking to minimize
the difference between the counterfactual feature vector and
the original, but is still a caveat.

8) Reliability of enterpretability techniques: As mentioned
in Section II-A, the models trained for this study have a
very limited training set. This results in significant variability
between trained models, particularly for neural networks.
Because interpretability techniques are applied to a particular
trained model, the explanations provided are subject to some
variance. In an effort to quantify this variance, we have re-
trained the final 90/10 model presented for interpretation in the
results (Section III-C) 10 times and aggregated the permutation
feature importance and mean absolute SHAP values per top
10 features across training runs. In practice, we recommend
using a much larger training set, which we hypothesize will
greatly reduce variance among model explanations.

9) Limitations: While the suite of techniques we apply is
as a whole robust, limitations to the generalizability of our
interpretations apply. For example, interpreting the predic-
tions of a model that is overfit or underfit (in other words,
has poor predictive performance) is a risky endeavour; if
the model doesn’t make accurate predictions, the reasons it
made those predictions and the advice we extract to change
them is not useful. Furthermore, explanations reflect the
learned model and the supplied features; vendor-provided pre-
computed quantities (e.g., angular velocities) and partner-
side preprocessing opacity may limit reproducibility. Aside
from this, residual correlations after VIF filtering can still
bias marginal explanation methods; we therefore attempt to
triangulate conclusions across multiple explanation families
(SHAP, ALE, permutation, and counterfactuals). Counterfac-
tual suggestions are recommendations under a particular model
and must be validated in prospective trials or biomechanical
simulations before coaching deployment.

III. RESULTS

In this section, we will present the results of the ex-
perimentation in terms of both predictive performance and
interpretability. Note that for interpretability results, we refer
to a particular model trained on a final 90/10 train/test split.

A. Predictive performance: cross-validation by trial

First, we present results obtained from nested cross-
validation where folds are partitioned randomly by trial. Later,
in Section III-B, we present results where cross-validation
folds are partitioned by groups of user IDs as described in
Section II-E2.



1) Without dimensionality reduction: Table III summarizes
the nested cross-validation results across folds and feature
configurations for clubhead speed prediction using models
without dimensionality reduction.

TABLE III
TRIAL-WISE FOLD PARTITIONING WITHOUT DR: NESTED CV

PERFORMANCE (MEAN ± STD RMSE IN MPH)

Feature Set NN Ridge XGBoost Voting Stacking

B 5.7±1.3 7.5±1.4 6.7±1.3 5.7±1.3 5.5±0.7

B+F 5.0±1.1 7.1±0.7 6.1±0.8 5.2±0.7 5.2±1.0

B+T 5.0±0.5 6.8±1.1 5.0±0.8 4.6±0.6 4.3±0.4

B+T+S 5.0±1.1 6.3±1.2 5.4±0.5 4.7±0.9 4.5±0.8

B+T+S+F 5.3±1.4 5.9±1.4 5.1±0.5 4.7±0.9 4.7±1.0

According to the nested cross-validation procedure, the best
overall performance among models without dimensionality
reduction was achieved by the stacked ensemble using baseline
joint angles and displacements alongside the derived temporal
features consisting of time between swing phases (RMSE =
4.311 ± 0.427 mph).

Table IV shows the performance of each model type on the
final 90/10 split in terms of RMSE (mph).

TABLE IV
TRIAL-WISE FOLD PARTITIONING WITHOUT DR: FINAL TEST RESULTS

(RMSE IN MPH)

Feature Set NN Ridge XGBoost Voting Stacking

B 3.622 5.956 4.372 3.361 3.415
B+F 4.091 5.955 4.825 4.019 3.724
B+T 4.176 5.314 3.405 3.111 2.834
B+T+S 4.150 6.029 4.867 3.941 3.250
B+T+S+F 3.374 5.778 4.886 3.968 4.184

2) With dimensionality reduction: Table V summarizes the
nested cross-validation results for models using dimensionality
reduction across folds and feature configurations for clubhead
speed prediction.

TABLE V
TRIAL-WISE FOLD PARTITIONING WITH DR: NESTED CV PERFORMANCE

(MEAN ± STD RMSE IN MPH)

Feature Set NN Ridge XGBoost Voting Stacking

B 5.4±1.2 8.5±1.9 6.5±1.5 5.4±1.2 6.0±1.6

B+F 5.8±1.2 7.6±0.9 6.0±1.0 5.8±1.0 6.0±1.0

B+T 4.9±0.3 7.8±1.3 5.0±0.7 4.5±0.5 4.6±0.7

B+T+S 4.6±0.5 7.3±1.5 5.4±0.5 4.5±0.6 4.7±1.0

B+T+S+F 4.9±1.0 7.1±1.3 5.0±0.6 4.7±1.0 4.8±1.0

According to the nested cross-validation procedure, the
best overall performance among models using dimensionality
reduction was again achieved using baseline joint angles
and displacements alongside the derived temporal features,
though this time by the voting ensemble (RMSE = 4.467 ±
0.463 mph). We observe similar trends as seen with the non-
dimensionality-reduction models, albeit with generally slightly
worse performance overall.

Table VI shows the performance of each model type on the
final 90/10 split in terms of RMSE.

TABLE VI
TRIAL-WISE FOLD PARTITIONING WITH DR: FINAL TEST RESULTS (RMSE

IN MPH)

Feature Set NN Ridge XGBoost Voting Stacking

B 3.992 7.897 4.109 3.554 3.967
B+F 4.127 7.603 5.111 4.189 3.842
B+T 3.746 7.608 3.353 3.266 2.593
B+T+S 4.181 7.810 4.994 4.037 4.801
B+T+S+F 3.383 7.655 4.804 3.601 3.548

3) LSTM: For completeness, the LSTM achieved poor
performance on the baseline feature set compared with the best
performers on tabular features (RMSE = 7.696 ± 1.381 mph in
the best case). See Section IV-A3 for discussion of this poor
performance. Since LSTMs require time-series inputs that are
innately difficult to apply interpretability techniques to and are
costly to train, our experimentation was limited to the feature
sets in Table VII.

TABLE VII
LSTM NESTED CV PERFORMANCE (MEAN ± STD RMSE IN MPH)

Feature Set LSTM

B 8.292 ± 1.615
B+S 7.944 ± 1.464
B+S+F 7.696 ± 1.381

B. Predictive performance: cross-validation by groups of user
IDs

Due to the poor predictive performance of models trained
on data split according to user ID, we will not apply inter-
pretability techniques to these models and therefore did not
train final models on the 90/10 split. See Section IV-A4 for
further discussion on this observed performance degradation.

1) Without dimensionality reduction: Table VIII presents
predictive performance for models trained on cross-validation
splits by groups of user IDs without dimensionality reduction.

TABLE VIII
GROUP-WISE FOLD PARTITIONING WITHOUT DR: NESTED CV

PERFORMANCE (MEAN ± STD RMSE IN MPH)

Feature Set NN Ridge XGBoost Voting Stacking

B 14.5±5.0 13.6±5.8 13.7±4.5 14.1±5.2 15.3±6.1

B+T 12.9±6.4 13.6±6.6 11.7±5.6 12.5±6.6 12.5±6.4

2) With dimensionality reduction: Table IX presents predic-
tive performance for models trained on cross-validation splits
by groups of user IDs with dimensionality reduction.

C. Interpretability

When it comes to interpretability, the explanation for a
model’s prediction is only as good as the prediction itself.
Ideally, we would apply our proposed interpretability suite



TABLE IX
GROUP-WISE FOLD PARTITIONING WITH DR: NESTED CV PERFORMANCE

(MEAN ± STD RMSE IN MPH)

Feature Set NN Ridge XGBoost Voting Stacking

B 14.7±5.6 14.5±4.8 14.2±4.7 14.0±4.7 14.4±5.7

B+T 13.2±6.9 14.4±5.0 11.6±5.6 11.9±5.8 12.0±6.1

to a model trained across a much larger user pool which
would presumably result in a model with even better predictive
performance and therefore, more reliable explanations. To
this end, we did attempt to collect our own dataset (∼ 70
swings from 8 users) consisting of all the heretofore mentioned
features alongside consistent launch metrics (spin rate, carry
distance, offline distance) and swing improvement recommen-
dations from a qualified coach (who was present during data
collection). Unfortunately, at the time of writing, the kinematic
measurements from this data collection session have not yet
been made available to us by our partner. If we had access to
this information, we would assess the validity of the explana-
tions provided by our interpretability suite by comparing them
with the collected coaching recommendations.

That said, we will show explanations for models trained
on the baseline feature set (B). We chose the B feature set
because we believe that models trained on the B feature
set offer the richest and most accessible explanations due
to the obviousness of feedback involving temporal features
and the prohibitive non-ubiquity of force plates respectively.
To this end (and due to space constraints), we will show
explanations for the best performing model according to the
nested CV performance. Namely, we will interpret the pure
neural network trained on B with dimensionality reduction
(“NN (DR, B)”). The model interpreted in the following
subsections is the same model whose test set performance is
shown in Table VI i.e. the model trained on a 90/10 split over
the entire dataset.

The model’s predictive performance is pictured in Figure 2.
1) Permutation feature importance: We start by examining

the permutation feature importance across both the train and
test sets (pictured in Figure 3). For both sets, the upper
torso turn in downswing and backswing appear as important
features, alongside the right elbow angle in the takeaway.

2) ICE plots and PDPs: Next, we examine the marginal
feature effects in both magnitude and direction of one of the
most important features according to PFI across the train and
test sets: elbow_angle_r_takeaway.

Figure 4 shows the ICE plot and PDP for
elbow_angle_r_takeaway. We observe a heterogeneous
effect from the ICE plot, but we also observe this heterogeneity
to occur at values far from the true value for each sample.
Further, the heterogeneity appears mostly in the magnitude of
the effect, and not the direction. Therefore, we can tentatively
accept the explanation provided by the PDP; according to
our model, a straighter trail arm elbow during the takeaway
is predictive of a greater clubhead speed. This aligns with

Fig. 2. NN (DR, B): performance

Fig. 3. NN (DR, B): permutation feature importance

the typical coaching advice to take the club back “high and
outside”.

Fig. 4. NN (DR, B): ICE plot and PDP for elbow_angle_r_takeaway

3) ALE: The ALE plot in Figure 5 confirms the direction
of the feature effect we determined from the ICE plot and PDP
above. However, the ALE disagrees slightly in the magnitude;
when considering in-distribution perturbations (as ALE does),
it appears that elbow_angle_r_takeaway is less impact-
ful than our previous marginal analysis would suggest. Note



that the left tail of the ALE curve is likely something of an
artifact due to the sparsity of samples with low values for
elbow_angle_r_takeaway and the consequently wide
bin.

Fig. 5. NN (DR, B): ALE plot for elbow_angle_r_takeaway

4) Counterfactual explanations: A counterfactual explana-
tion for a random example is pictured in Figure 6. This par-
ticular counterfactual was generated with a desired clubhead
speed of 5 mph greater than the original prediction. As we
can see, the cf_pred is not quite 5 mph greater than the
original, which is due to the fact that we zero out feature
changes with magnitude less than 1

4 · feature std. This slightly
alters the prediction below the desired threshold, but achieves
a sparser counterfactual. Alongside the names of the features
to change on the y-axis are the feature standard deviations in
parentheses.

5) LIME: The results of the LIME interpretation can vary
significantly depending on the selected parameters. As men-
tioned in Section II-F we limit the number of features available
to the local surrogate, resulting in a local model accepting
the 5 input features pictured in Figure 7. This local model
seems to value the same features as PFI, which lends some
credibility to both explainers. For comparison’s sake, we use
the same sample swing from the counterfactual analysis. This
particular local model implies that this instance’s far shoulder
turn and significant pelvis lift at impact contribute positively to
the predicted clubhead speed, while the pelvis lift in transition,
straight front knee at the top of the backswing, and excessive

Fig. 6. NN (DR, B): Counterfactual explanation for test sample #15

head tilt toward the target during the backswing contribute
negatively to the predicted clubhead speed.

Fig. 7. NN (DR, B): LIME for test sample #15

6) SHAP: SHAP provides a number of rich explanations,
both locally and globally. We begin by examining the local
explanation for the same sample instance we have been using
for counterfactuals and LIME, #15. From Figure 8, we actually
see general agreement between LIME and SHAP as to the
effects of upper torso turn in the backswing, pelvis lift at
impact, pelvis lift in the downswing, lead knee angle in
the backswing, and head tilt in the backswing. Aside from
these previously seen feature effects, SHAP picks up one
additional significant effect: the high magnitude of upper torso
tilt (towards the target) in the downswing is deemed predictive
of high clubhead speed.

Fig. 8. NN (DR, B): SHAP waterfall plot for test sample #15

Next, we’ll examine SHAP’s summary of the test set
in Figure 9. The features are ordered from least to most
important from left to right, with SHAP value on the y-
axis and feature value indicated by the colour bar. To
gain an intuition, the plot says that high feature val-
ues (redder) for UT_turn_downswing correspond to
higher SHAP values (positive impact on predicted clubhead
speed). On the other hand, low feature values (bluer) for
elbow_angle_r_impact correspond to higher SHAP val-
ues (positive impact on predicted clubhead speed). Overall, the



importance ranking seems to agree with the PFI in Figure 3.
SHAP favours more elbow angle features, while PFI favoured
more pelvis features. However, both agree on the importance
of the upper torso turn in both backswing and downswing.

Fig. 9. NN (DR, B): SHAP summary plot

7) Reliability of interpretations: As mentioned in Section
II-F8, we retrained the model presented in this section 10 times
and aggregated the permutation importance (Figure 12) and
mean absolute per-feature SHAP values (Figure 13) across
training runs to quantify variance due to randomness involved
in training. Due to space constraints, the plots are presented
in Appendix A-B.

IV. DISCUSSION

A. Predictive performance

1) Impact of feature set: Across the board, we observe that
the B+T feature set produces the best performing models (see
Tables III and V). Notably, adding force or rate-kinematic
features on top of this feature set degrades performance nearly
across the board, suggesting that these features may introduce
noise or overfitting. Further, while models trained only on the
speed-agnostic baseline feature set perform worse across the
board than those with temporal features included, the gap is
not extreme. This encourages the idea that factors other than
raw speed are influential in producing clubhead speed.

2) Strong final model performance: Notably, the errors on
the small 10% test sets (tabulated in Tables IV and VI) are
often on the lower end of, or even below, the ranges obtained
from the nested CV results (Tables III and V). We consider
three possible explanations for this: the first is variance; all of
these unexpectedly strong performers are simply lucky. The
second is that at the tiny scale of our available training data,
the increase in training set size from 80% (in the nested CV
procedure) to 90% is significant for model performance. The
third is that by decreasing the proportion of data partitioned
for testing, we increase the likelihood that a given user will

appear in both the train and test sets. We believe the first
reason is an unlikely explanation, since the performance on
the 90/10 split is consistently better than expected according
to the nested CV results. This leads us to attribute the effect to
a mixture of the second and third reasons. For a brief address
to the third reason, see Section IV-A4 below.

3) Weak LSTM performance: Somewhat unexpectedly, the
LSTM performs considerably worse than all tabular-feature
based models. We suspect that this is due to overfitting
the small training set. See Figure 14 in Appendix A-C for
the loss curves of a randomly selected LSTM model from
the nested CV procedure; because the training loss rapidly
drops to near zero while the validation loss remains relatively
high throughout training, our hypothesis is that the model
descends too quickly toward a local minimum which is not
representative of the underlying patterns we are trying to fit.
In other words, the model quickly finds some noisy features
that allow it to memorize the training data and it struggles to
overcome this. We do attempt to combat the overfitting issue
with high dropout values and weight regularization, but this
doesn’t seem to be effective. In any case, LSTMs are difficult
to interpret which means that tabular-feature based models are
better suited for our application regardless.

4) Nested CV performance degradation due to grouping:
Whether dimensionality reduction is used or not, partitioning
the data based on user ID drastically degrades performance.
There are a number of possible explanations for this, including
covariate shift between shipments (different player popula-
tions, setups, capture conditions), concept drift across ship-
ments (different distributions of swing styles), and insufficient
sample coverage to completely represent swing variability.

We believe that the last point is the most likely (and
all-encompassing) culprit, as the magnitude of performance
degradation between user-split and trial-split cross validation is
quite variable depending on the particular user-split fold. That
is to say, the presence of particular users in the training set
improves test set performance on unseen users. This indicates
that when similar enough swings are seen during training,
generalization to other individuals is possible. See Appendix
A-D2 for further details.

To address criticism of our models’ lack of ability to
generalize to unseen users as seen in Tables VIII and IX,
we posit that generalization of predictive performance is
uniquely less important in this application than elsewhere in
machine learning. This is because the ultimate objective of
our experimentation is not strictly to predict swing outcomes
of never-before-seen golfers. Rather, we seek to understand
which factors contributed to a given outcome, and thereby to
alter the outcome as desired. To this end, it is not necessary to
be able to make accurate predictions initially; rather, we can
fine-tune or even retrain a model from the ground up on the
original dataset augmented with the swings of a new user. That
way, the model still retains the knowledge of other golf swings
necessary to realistically propose feasible swing changes while
gaining an accurate understanding of the outcomes of the new
user’s swings. In other words, the application space of our



model is one where ground truth labels should always be
available, eliminating the necessity for the model to generalize
well out-of-the-box. That being said, increasing the dataset
size available for model fitting will likely drastically improve
generalization performance anyways.

B. Interpretability synthesis

1) Heuristics for interpretation reliability: As we see in
Figure 3, the ranking of features appears slightly different
between train and test sets. This is expected; one set may have
more samples that conditionally favour a particular feature.
For example, it may be that for golfers with swing type A,
pelvis bend in the backswing is very important for predicting
clubhead speed while for golfers of another swing type, it
is unimportant. Then, the discrepancy in PFI between the
datasets may be explained by a greater prevalence of swings
of type A in one set compared to the other.

That being said, it is encouraging to see that the same
features rank among the most important across the train
and test sets. This indicates that the model is generalizing
well. Further supporting this notion is the minimal amount of
features with negative importance on the test set; significant
negative importance for a given feature across the test set
would indicate that the model performs better when that
feature’s true value is obscured. In other words, it would
indicate overfitting to artifacts.

2) Temporal feature tradeoffs: To demonstrate the down-
side of including temporal features, we present plots from
select interpretability techniques applied to the B+T Stacked
Regressor in Appendix E. As we see from Figure 24, tem-
poral features dominate as the most important features. That
being said, the ALE plots for pelvis_lift_downswing
and UT_turn_backswing in Figure 25 still show some
effect. Further, the counterfactual in Figure 26 for the random
instance still changed a non-temporal feature (albeit by only a
third of a standard deviation). In a world where more training
data is available, the trade-off between the richer explanations
provided by models trained on the baseline feature set and the
better predictive performance provided by models with access
to temporal features could be more thoroughly explored. It is
our hypothesis that, with a large enough sample size, the differ-
ence in predictive performance would become negligible since
we assume that there are some underlying static kinematic
features that are entirely predictive of clubhead speed. If this
hypothesis holds, one would rely on explanations from models
without access to temporal features. However, as we mention
in Section IV-C3, future work would be better focused on
predicting outcomes less trivially related to temporal features
(like offline distance, etc.). For models predicting outcomes
of these types, including temporal features would have a
diminished downside while potentially improving predictive
performance because temporal features will be less trivially
related to such outcomes.

Interestingly, models trained on both feature sets
tend to be in agreement that high magnitudes of
pelvis_lift_downswing contribute negatively

to predicted clubhead speed and highly negative
UT_turn_backswing values contribute positively to
predicted clubhead speed. This is depicted in Figures 9 and
25. This pattern is consistent across feature sets; while models
trained on different feature sets tend to produce differing
effect magnitudes for a given feature, they agree on the
direction.

C. Limitations due to available data

As stated in Section II-A, there were only 424 usable swings
available for our experiments. Furthermore, these swings are
still lacking crucial features such as anthropometrics, club-type
labeling, and golfer skill-level. This has a few limiting effects.

1) Data sparsity: Regardless of the soundness of our un-
derlying experimentation methodology, we cannot guarantee
the robustness or generalization of our predictive models. This
is well exhibited by Tables VIII and IX, where we see that
predictive performance is significantly degraded when our
models are tasked with predicting clubhead speed for users
not seen during training. Although it is impossible to say for
certain whether having a larger user pool would resolve this, it
is our strong suspicion that allowing models access to a wider
variety of swings during training would improve generalization
to unseen golfers. We reason that due to the technical nature
of the golf swing as a movement, there is a relatively narrow
distribution of biomechanically viable swings as seen through
the snapshot-featurized lens. Given a rich enough dataset that
comfortably spans this distribution (on the order of tens of
thousands of swings), we believe that we could train a well-
generalizing model.

However, predictive performance isn’t the only thing hin-
dered by the sparse training data. Our models’ understanding
of the golf swing and therefore, their advice, is limited by
the swings to which they have access during training; if elite
golfers do something distributionally different from regular
golfers and no elite golfers are present in the training data, our
models won’t have knowledge of how features contribute to
an excellent outcome. In short, our models need have access
to training data that better spans the space of feasible (and
optimal) golf swings in order to be able to map swings to
outcomes and subsequently give feedback on how to move
around the outcome space in the desired direction.

2) Critical features: Due to the lack of information such
as golfer height, weight, and club-type, potentially critical
feature interactions are impossible to capture. For example,
it is likely that golfer height (as a proxy for limb length)
is significantly influential on clubhead speed. For the same
reason, so is club type since clubs have different lengths. While
these features are not physically alterable (i.e. we wouldn’t
want model feedback along the lines of “grow taller to increase
clubhead speed”), they contribute to the outcome in a way that
our models have no direct knowledge of. Providing access to
this information would likely significantly improve predictive
performance, which would allow us to better trust model
predictions. Furthermore, a model armed with access to such
features may produce better explanations. To illustrate this,



with the data in its current state, consider two golfers with
similar kinematics. One hits a 9-iron and the other hits a 3-iron,
producing significantly different clubhead speeds (10-20 mph).
Our model is forced to attribute this difference in outcome to
something; it may be the case that the model can find some
underlying pattern in the data that we would consider causal,
such as more pelvis lift at impact in the case of the longer
club, but more likely it would lead to the model fitting to
some noisy or irrelevant feature; maybe the golfer who hit
the longer club bends their trail elbow slightly more than
the golfer who hit the 9-iron, leading the model to falsely
attribute higher clubhead speed to greater trail-elbow bend.
Given a much larger pool of available samples, it is more likely
that a model could implicitly learn a more causal relationship
between features and outcomes, even without access to prudent
information. Overall, without a drastic increase in sample size,
we would be more confident in the predictive performance
and interpretation of the models we train if they were given
access to more of the features that we consider likely to explain
differences in swing outcomes.

3) Desired outcomes: Our study is limited to predicting a
somewhat trivial and less relevant swing outcome: clubhead
speed. With access to swings labeled by more prudent out-
comes such as offline distance, carry distance, and spin rate,
we would be able to analyze metrics that are more important
to golfers. The best golfers should be specifically concerned
with minimizing errors, leading us to believe that future studies
into reducing offline distance and aligning carry distance with
golfer expectations would be more useful in the field.

D. Implications

1) Statistical modeling: We believe that this study serves as
a valuable pilot in statistical modeling; typically, researchers
must propose a hypothesis (in this case, a feature effect), and
then investigate its validity in order to be able to say whether it
exists. With the framework we employ here, the feature effect
is discovered via an opaque predictive model and recovered
via interpretability techniques. This approach can be widely
applied across domains; so long as enough training data exists
for the black-box model to establish a relationship between
predictors and outcomes, these relationships can be recovered
with relative ease via the suite of interpretability techniques
we present in this work.

2) Golf instruction: This study demonstrates the feasibility
of using interpretable machine learning to provide data-driven
golf instruction based solely on kinematic measurements.
The approach offers several advantages. First, there is no
requirement for specialized technology; technically, with the
software available from our industry partner, only two cameras
are required. Second, our proposed quantitative assessment of
swing characteristics reduces the inherent subjective bias in
golf instruction. Third, our approach reduces the cost-barrier
to entry for swing coaching.

E. Future work

Priority areas for future development include:

• Acquiring more labeled data for spin/carry/offline dis-
tance to support richer target modeling

• Expanding dataset size to better validate existing findings
• Validating explanations in an interventional study i.e.

having subjects modify their swing according to model
advice (counterfactual or other local method) and assess-
ing performance changes

• Translating kinematic findings into coaching cues val-
idated by domain experts i.e. communicating model-
proposed kinematic changes in a golfer-interpretable way

• Integrating musculoskeletal modeling software to vali-
date biomechanical feasiblity of model-proposed swing
changes

V. CONCLUSION

This study successfully demonstrates the feasibility of pre-
dicting clubhead speed from snapshot-based kinematic fea-
tures and using machine learning interpretability techniques
to explain the predictions. We found that stacked ensembles
achieved the best predictive performance (RMSE = 4.311 ±
0.427 mph) using kinematics and temporal features. How-
ever, static-kinematics-only models provided more mechanistic
insights suitable for coaching applications. As a particular
insight according to the model analyzed, it appears that main-
taining a relatively straight trail elbow during the takeaway
improves clubhead speed. Unfortunately, cross-user general-
ization proved difficult due to the limited size of the available
dataset and the therefore limited coverage of the input space.
Be that as it may, we still believe the method we presented is
useful since most coaching applications will be able to provide
examples of a target user’s swing to fit to before applying
interpretability techniques.

The work establishes a foundation for data-driven golf
instruction that prioritizes accessibility and interpretability.
The snapshot-based approach offers the ability to take time-
series data and provide actionable biomechanical insights from
black-box predictive models.

Future developments should focus on expanding the dataset
diversity and validating coaching recommendations with do-
main experts. Beyond golf, this framework can be applied
in domains where interpretable explanations are important;
both for understanding observed outcomes and for generating
actionable guidance on how to adjust inputs to alter results as
desired.
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APPENDIX A
SUPPLEMENTARY MATERIAL

A. Model architectures

For convenience, we provide basic schematic diagrams for the neural network architectures designed for this study.

Fig. 10. Schematic of the fully connected neural network used in Section II-D1

1) Neural network: Figure 10 shows the detailed schematic of the neural regressor,where num_layers and hidden_dim
are selected by Optuna.

Fig. 11. Schematic of the fully connected neural network used with dimensionality reduction (autoencoder) as described Sections II-C3 and II-D1

2) Autoencoder + neural network: Figure 11 shows the schematic of the combined autoencoder and neural regressor,
where num_layers, hidden_dim, num_encoder_layers, and bottleneck_dim are selected by Optuna and the
reconstruction loss and prediction loss are jointly optimized as described in Section II-C3.



B. Reliability of interpretability techniques

Figures 12 and 13 quantify the variance in feature importances according to PFI and mean absolute SHAP values (per
feature) across training runs.

Fig. 12. NN (DR, B): Mean and standard deviation of mean permutation feature importance across 10 training runs

Fig. 13. NN (DR, B): Mean and standard deviation of mean absolute SHAP values across 10 training runs

C. LSTM loss curves

Figure 14 presents the training and validation loss curves for a randomly selected LSTM from the nested CV procedure. The
training loss drops rapidly, while the validation loss remains relatively constant over epochs. We believe that this is indicative
of the optimizer converging on a non-generalizable solution.



Fig. 14. LSTM training and validation loss curves

D. Variation between user IDs

1) Visualization of swing space by user ID: It may be helpful to envision how swings vary by user. To this end, we compute
the PCA transform over the entire dataset loaded with the B feature set. In Figure 15, we plot the top 2 principal components
of the top 5 most prevalent user IDs in the dataset, where each point is coloured according to its user ID. This is not the most
robust visualization; the top 2 PCs explain only 35% of the variance in the data. However, we are limited to a 2-dimensional
representation and some interesting observations can still be made. For instance, we can see that there is a lot of intra-user
variation; apparently, the same user is capable of making very different swings. Conversely, there seems to be some inter-user
similarity in the upper left quadrant of the plot; different users are capable of making very similar swings. From this, we
conclude that it is highly likely that each user ID actually represents many golfers and that distinct golfers may make very
similar swings.



Fig. 15. Top 2 principal components of the top 5 most represented users in the dataset

2) Particular group k-Fold experiment results: As mentioned in Section IV-A4, we achieved encouraging results in a
particular fold of the group k-fold nested CV procedure indicating the potential for trained models to generalize to unseen
users. The results of that experiment are presented in Table X. The 4th fold of the experiment yielded promising test set RMSE,
comparable to the performance of models using a trial-wise fold partitioning.

TABLE X
GROUP K-FOLD, WITHOUT DR, B+T: FOLD-WISE PERFORMANCE RESULTS (RMSE IN MPH

Fold NN Ridge XGBoost Voting Stacking

1 15.928 19.778 13.952 18.768 15.492
2 22.437 21.038 19.669 19.809 21.390
3 9.710 10.099 6.720 6.894 8.203
4 5.740 5.352 6.213 5.312 5.080
5 10.706 11.956 11.921 11.734 12.126

We computed the PCA over the entire dataset loaded with the B+T feature set to aid with visualization. Figure 16 shows
that the swings made by users in the test partition for that 4th fold were relatively close in PC space to swings made by the
rest of the users. This supports our hypothesis that improving the training set’s coverage of the swing space will help with
generalization.



Fig. 16. Top 2 principal components of all data points coloured by set membership in the 4th fold of a particular group k-fold experiment

APPENDIX B
HYPERPARAMETER SEARCH SPACE

A. LSTM

Table XI shows the hyperparameter search space used for LSTMs in the nested CV procedure.

Parameter Range Sampling

batch_size {32, 64} choice
lr [1e-4, 1e-1] log-uniform
epochs 1000 fixed
loss {mse, mae} choice
num_layers [1, 3] int (step=1)
hidden_dim {32, 64, 128} choice
dropout [0.0, 0.5] float (step=0.1)
wr (weight-reg) [1e-3, 1e-1] log-uniform
patience {20,50,80,150,250,500} choice

TABLE XI
LSTM SEARCH SPACE (NUM TRIALS = 30, FOLDS = 5 / 3).



B. Without DR

Table XII shows the hyperparameter search space used for tabular models without DR in the nested CV procedure.

Parameter Range Sampling

Neural network:
batch_size {32, 64} choice
lr [1e-4, 1e-1] log-uniform
weight_reg [1e-3, 1e-1] log-uniform
num_epochs 2000 fixed
loss_type {mse, mae} choice
num_layers [3, 8] int
layer_width {128, 256, 512} choice
dropout [0.0, 0.5] float (step=0.1)
patience {50,80,100,150,2000} choice

Ridge:
alpha [1e-3, 1e3] log-uniform

XGBoost:
n_estimators [50, 300] int (step=50)
max_depth [3, 15] int
eta [1e-3, 0.3] log-uniform
eval_metric {rmse, mae} choice

TABLE XII
MERGED SEARCH SPACE FOR TABULAR MODELS WITH DIMENSIONALITY REDUCTION (NUM TRIALS = 40, FOLDS = 5 / 3, VIF THRESHOLD = 5).



C. With DR

Table XIII shows the hyperparameter search space used for tabular models with DR in the nested CV procedure.

Parameter Range Sampling

AE + Neural network:
batch_size {32, 64} choice
lr [1e-4, 1e-1] log-uniform
weight_reg [1e-3, 1e-1] log-uniform
num_epochs 2000 fixed
loss_type {mse, mae} choice
num_layers [3, 8] int
layer_width {128, 256, 512} choice
regressor_dropout [0.0, 0.5] float (step=0.1)
ae_dropout [0.0, 0.3] float (step=0.1)
patience {50,80,100,150,2000} choice
num_encoder_layers [1, 3] int
bottleneck_dim [4, 16] int (step=4)
rec_weight [0.1, 1.0] float (step=0.1)

Ridge:
alpha [1e-3, 1e3] log-uniform
n_components [3, 20] int (step=2)

XGBoost:
n_estimators [50, 300] int (step=50)
max_depth [3, 15] int
eta [1e-3, 0.3] log-uniform
eval_metric {rmse, mae} choice

TABLE XIII
MERGED SEARCH SPACE FOR TABULAR MODELS WITH DIMENSIONALITY REDUCTION (NUM TRIALS = 40, FOLDS = 5 / 3, VIF THRESHOLD = 5).



APPENDIX C
COMPLETE FEATURE LIST (NAMES, DESCRIPTIONS AND UNITS)

Table XIV provides a legend for the interpretation of each feature.

Term Definition

turn Rotation about the vertical axis.
tilt Rotation about the sagittal axis (side-to-side tilt).
bend Flexion/extension about the lateral axis (forward/backward bending).
sway Lateral translation (side-to-side movement).
thrust Sagittal translation (forward/backward movement).
lift Vertical translation (up/down movement).
Joint angles Joint flexion for knee/elbow/wrist (e.g., increased flexion = closing the joint).
F_x Sagittal ground reaction force.
F_y Lateral ground reaction force.
F_z Vertical ground reaction force.

TABLE XIV
FEATURE TYPE LEGEND

Feature Units Positive means

head_turn ◦ Nose toward target
head_tilt ◦ Right ear downward
head_bend ◦ Chin toward ball
head_sway cm Left ear toward target
head_thrust cm Chin toward ball
head_lift cm Top of head upward
UT_turn ◦ Chest toward target
UT_tilt ◦ Right side downward
UT_bend ◦ Chest toward ball
UT_sway cm Left side toward target
UT_thrust cm Chest toward ball
UT_lift cm Upper torso upward
pelvis_turn ◦ Pelvis toward target
pelvis_tilt ◦ Right hip downward
pelvis_bend ◦ Pelvis forward (anterior tilt)
pelvis_sway cm Left hip toward target
pelvis_thrust cm Pelvis toward ball
pelvis_lift cm Pelvis upward
knee_angle_l ◦ Increased flexion (left)
knee_angle_r ◦ Increased flexion (right)
elbow_angle_l ◦ Increased flexion (left)
elbow_angle_r ◦ Increased flexion (right)
wrist_angle_l ◦ Increased flexion (left)

Pelvis_Rotational_Speed ◦/s Rotation toward target (speed)
Ut_Rotational_Speed ◦/s Chest rotation toward target (speed)

Fx_l N Anterior ground force (left)
Fx_r N Anterior ground force (right)
Fy_l N Lateral ground force (left)
Fy_r N Lateral ground force (right)
Fz_l N Vertical ground force (left)
Fz_r N Vertical ground force (right)

takeaway-backswing time s Duration: takeaway → end of backswing
backswing-downswing time s Duration: backswing → start of downswing
downswing-impact time s Duration: downswing → impact

TABLE XV
FULL FEATURE INVENTORY WITH UNITS AND SIGN CONVENTION

Table XV shows all features available as predictors. Feature sets (B, S, F, and T respectively) are separated by single rule
lines. For tabular (snapshot) based models, the feature values at each critical position in {P2, P4, P5, P7} (Figure 1) are
extracted and used as individual features. The temporal (T) features are hand-crafted by taking the frame difference between
each consecutive pair in {P2, P4, P5, P7} and multiplying them by the frame-rate of video capture.



APPENDIX D
CORRELATION ANALYSIS AND VIF FILTERING

In this section, we present the results of the VIF filtering preprocessing step described in Section II-C1. Technically, the
procedure will modify the feature set in slightly different ways depending on the samples included in the training set for a
particular run. In the following subsections, we will present results from the final 90/10 train/test split models of each feature
set. To begin, we picture a correlation heatmap including all available features which have a Pearson correlation coefficient of
absolute value greater than or equal to 0.7 before VIF filtering in Figure 17.

Fig. 17. Correlation heatmap of features with a Pearson correlation coefficient of magnitude at least 0.7 before VIF filtering procedure

This heatmap may be difficult to interpret. For the reader’s convenience, we also provide a per-feature-set table
mapping kept features to their most highly correlated peers in the following subsections. To summarize Figure 17, high
correlations appear between features of the same segment, same type across time i.e. pelvis_sway_backswing and
pelvis_sway_downswing as well as between features of different segments, same type i.e. UT_sway_downswing and
pelvis_sway_downswing.

The following subsections present a heatmap of correlations between remaining features (all of which have magnitude less
than 0.7) followed by a table showing the most highly correlated removed peer(s) of each retained feature.

A. Baseline feature set
Figure 18 shows the remaining correlations between features after performing the VIF filtering step on the B feature set.



Fig. 18. Baseline Feature Set: Correlation heatmap between remaining features following VIF filtering procedure

Table XVI shows the most highly correlated removed peers of each remaining feature.



Kept feature Removed pre-filter features (|r|≥ 0.70)

head_turn_takeaway head_turn_downswing (+0.710)
head_turn_impact —
head_tilt_takeaway UT_tilt_takeaway (+0.716)
head_tilt_backswing —
head_bend_takeaway head_bend_downswing (+0.750), head_bend_backswing (+0.734)
head_bend_impact —
head_sway_takeaway UT_sway_takeaway (+0.704)
head_thrust_takeaway UT_thrust_takeaway (+0.769)
UT_turn_backswing pelvis_turn_backswing (+0.767)
UT_turn_downswing pelvis_turn_downswing (+0.733)
UT_tilt_downswing head_tilt_downswing (+0.795)
pelvis_turn_takeaway UT_turn_takeaway (+0.866)
pelvis_tilt_takeaway —
pelvis_tilt_backswing —
pelvis_tilt_impact —
pelvis_bend_impact UT_bend_impact (+0.919), pelvis_bend_downswing (+0.707)
pelvis_sway_takeaway UT_sway_takeaway (+0.885)
pelvis_sway_impact UT_sway_downswing (+0.919), pelvis_sway_downswing (+0.910), UT_sway_impact

(+0.864), UT_sway_backswing (+0.807), pelvis_sway_backswing (+0.796),
head_sway_downswing (+0.791), head_sway_backswing (+0.738)

pelvis_thrust_impact pelvis_thrust_downswing (+0.843), UT_thrust_impact (+0.801),
UT_thrust_downswing (+0.777), pelvis_thrust_backswing (+0.737)

pelvis_lift_takeaway UT_lift_takeaway (+0.760)
pelvis_lift_downswing UT_lift_downswing (+0.890), head_lift_downswing (+0.706)
pelvis_lift_impact —
knee_angle_l_backswing —
knee_angle_r_takeaway —
knee_angle_r_impact —
elbow_angle_l_downswing —
elbow_angle_r_takeaway elbow_angle_l_takeaway (+0.806)
elbow_angle_r_backswing elbow_angle_l_backswing (+0.811)
elbow_angle_r_impact —
wrist_angle_l_takeaway —
wrist_angle_l_backswing —
wrist_angle_l_downswing —
wrist_angle_l_impact —

TABLE XVI
BASELINE: REMOVED (PRE-FILTER) FEATURES THAT WERE HIGHLY CORRELATED WITH EACH KEPT FEATURE. ONLY FEATURES REMOVED BY VIF

FILTERING ARE LISTED, WITH PEARSON r (SIGNED).

B. Baseline + forces feature set

Figure 19 shows the remaining correlations between features after performing the VIF filtering step on the B+F feature set.
Table XVII shows the most highly correlated removed peers of each remaining feature.



Fig. 19. Baseline + Forces Feature Set: Correlation heatmap between remaining features following VIF filtering procedure



Kept feature Removed pre-filter features (|r|≥ 0.70)

head_turn_takeaway head_turn_downswing (+0.710)
head_turn_impact —
head_tilt_takeaway UT_tilt_takeaway (+0.716)
head_tilt_backswing —
head_bend_takeaway head_bend_downswing (+0.750), head_bend_backswing (+0.734)
head_bend_impact —
head_sway_takeaway UT_sway_takeaway (+0.704)
head_thrust_takeaway UT_thrust_takeaway (+0.769)
UT_turn_backswing pelvis_turn_backswing (+0.767)
UT_turn_downswing pelvis_turn_downswing (+0.733)
pelvis_turn_takeaway UT_turn_takeaway (+0.866)
pelvis_tilt_takeaway —
pelvis_tilt_backswing —
pelvis_tilt_impact —
pelvis_bend_impact UT_bend_impact (+0.919), pelvis_bend_downswing (+0.707)
pelvis_sway_takeaway UT_sway_takeaway (+0.885)
pelvis_sway_impact UT_sway_downswing (+0.919), pelvis_sway_downswing (+0.910), UT_sway_impact

(+0.864), UT_sway_backswing (+0.807), pelvis_sway_backswing (+0.796),
head_sway_downswing (+0.791), head_sway_backswing (+0.738)

pelvis_thrust_takeaway pelvis_thrust_backswing (+0.832), pelvis_thrust_downswing (+0.723)
pelvis_thrust_impact pelvis_thrust_downswing (+0.843), UT_thrust_impact (+0.801),

UT_thrust_downswing (+0.777), pelvis_thrust_backswing (+0.737)
pelvis_lift_takeaway UT_lift_takeaway (+0.760)
pelvis_lift_downswing UT_lift_downswing (+0.890), head_lift_downswing (+0.706)
pelvis_lift_impact —
knee_angle_l_backswing —
knee_angle_r_takeaway —
knee_angle_r_impact —
elbow_angle_r_backswing elbow_angle_l_backswing (+0.811)
elbow_angle_r_impact —
wrist_angle_l_takeaway —
wrist_angle_l_backswing —
wrist_angle_l_downswing —
wrist_angle_l_impact —
Fx_l_backswing —
Fx_l_downswing —
Fx_l_impact —
Fx_r_takeaway —
Fx_r_backswing —
Fx_r_downswing —
Fx_r_impact —
Fy_l_impact —
Fy_r_takeaway Fy_l_takeaway (-0.833)
Fy_r_backswing Fy_l_backswing (-0.861)
Fz_l_impact —
Fz_r_downswing Fz_r_backswing (+0.877), Fz_r_impact (+0.759)

TABLE XVII
BASELINE + FORCES: REMOVED (PRE-FILTER) FEATURES THAT WERE HIGHLY CORRELATED WITH EACH KEPT FEATURE. ONLY FEATURES REMOVED BY

VIF FILTERING ARE LISTED, WITH PEARSON r (SIGNED).



C. Baseline + temporal feature set

Figure 20 shows the remaining correlations between features after performing the VIF filtering step on the B+T feature set.

Fig. 20. Baseline + Temporal Feature Set: Correlation heatmap between remaining features following VIF filtering procedure

Table XVIII shows the most highly correlated removed peers of each remaining feature.

D. Baseline + temporal + speeds feature set

Figure 21 shows the remaining correlations between features after performing the VIF filtering step on the B+T+S feature
set. Interestingly, the most important temporal feature (according to the B+T Stacked Regressor presented in Appendix E),
downswing-impact time, is filtered out.

Table XIX shows the most highly correlated removed peers of each remaining feature.



Kept feature Removed pre-filter features (|r|≥ 0.70)

head_turn_downswing head_turn_takeaway (+0.710), head_turn_backswing (+0.703)
head_turn_impact —
head_tilt_takeaway UT_tilt_takeaway (+0.716)
head_tilt_backswing —
head_bend_takeaway head_bend_downswing (+0.750), head_bend_backswing (+0.734)
head_bend_impact —
head_sway_takeaway UT_sway_takeaway (+0.704)
head_thrust_takeaway UT_thrust_takeaway (+0.769)
UT_turn_backswing pelvis_turn_backswing (+0.767)
UT_tilt_downswing head_tilt_downswing (+0.795)
pelvis_turn_takeaway UT_turn_takeaway (+0.866)
pelvis_tilt_takeaway —
pelvis_tilt_backswing —
pelvis_tilt_impact —
pelvis_bend_impact UT_bend_impact (+0.919), pelvis_bend_downswing (+0.707)
pelvis_sway_takeaway UT_sway_takeaway (+0.885)
pelvis_sway_impact UT_sway_downswing (+0.919), pelvis_sway_downswing (+0.910), UT_sway_impact

(+0.864), UT_sway_backswing (+0.807), pelvis_sway_backswing (+0.796),
head_sway_downswing (+0.791), head_sway_backswing (+0.738)

pelvis_thrust_takeaway pelvis_thrust_backswing (+0.832), pelvis_thrust_downswing (+0.723)
pelvis_thrust_impact pelvis_thrust_downswing (+0.843), UT_thrust_impact (+0.801),

UT_thrust_downswing (+0.777), pelvis_thrust_backswing (+0.737)
pelvis_lift_takeaway UT_lift_takeaway (+0.760)
pelvis_lift_downswing UT_lift_downswing (+0.890), head_lift_downswing (+0.706)
pelvis_lift_impact —
knee_angle_l_backswing —
knee_angle_r_takeaway —
knee_angle_r_impact —
elbow_angle_l_impact —
elbow_angle_r_backswing elbow_angle_l_backswing (+0.811)
elbow_angle_r_impact —
wrist_angle_l_takeaway —
wrist_angle_l_backswing —
wrist_angle_l_downswing —
wrist_angle_l_impact —
takeaway-backswing time —
backswing-downswing time —
downswing-impact time —

TABLE XVIII
BASELINE + TEMPORAL: REMOVED (PRE-FILTER) FEATURES THAT WERE HIGHLY CORRELATED WITH EACH KEPT FEATURE. ONLY FEATURES REMOVED

BY VIF FILTERING ARE LISTED, WITH PEARSON r (SIGNED).



Fig. 21. Baseline + Temporal + Speeds Feature Set: Correlation heatmap between remaining features following VIF filtering procedure



Kept feature Removed pre-filter features (|r|≥ 0.70)

head_turn_takeaway head_turn_downswing (+0.709)
head_turn_impact —
head_tilt_takeaway UT_tilt_takeaway (+0.716)
head_bend_takeaway head_bend_downswing (+0.750), head_bend_backswing (+0.734)
head_bend_impact —
head_sway_takeaway UT_sway_takeaway (+0.704)
UT_turn_backswing pelvis_turn_backswing (+0.765)
UT_turn_downswing pelvis_turn_downswing (+0.733)
UT_tilt_downswing head_tilt_downswing (+0.795)
UT_thrust_takeaway head_thrust_takeaway (+0.770)
pelvis_turn_takeaway UT_turn_takeaway (+0.866)
pelvis_tilt_takeaway —
pelvis_tilt_backswing —
pelvis_tilt_impact —
pelvis_bend_impact UT_bend_impact (+0.919), pelvis_bend_downswing (+0.710)
pelvis_sway_takeaway UT_sway_takeaway (+0.886)
pelvis_sway_impact UT_sway_downswing (+0.919), pelvis_sway_downswing (+0.910),

UT_sway_impact (+0.864), UT_sway_backswing (+0.807),
pelvis_sway_backswing (+0.797), head_sway_downswing (+0.790),
head_sway_backswing (+0.739)

pelvis_thrust_impact pelvis_thrust_downswing (+0.842), UT_thrust_impact (+0.802),
UT_thrust_downswing (+0.777), pelvis_thrust_backswing (+0.736)

pelvis_lift_takeaway UT_lift_takeaway (+0.760)
pelvis_lift_downswing UT_lift_downswing (+0.889), head_lift_downswing (+0.706)
pelvis_lift_impact —
knee_angle_l_backswing —
knee_angle_r_takeaway —
knee_angle_r_impact —
elbow_angle_l_downswing —
elbow_angle_r_backswing elbow_angle_l_backswing (+0.811)
elbow_angle_r_impact —
wrist_angle_l_takeaway —
wrist_angle_l_backswing —
wrist_angle_l_downswing —
wrist_angle_l_impact —
Pelvis_Rotational_Speed_takeaway Ut_Rotational_Speed_takeaway (+0.770)
Pelvis_Rotational_Speed_downswing Ut_Rotational_Speed_downswing (+0.841)
Pelvis_Rotational_Speed_impact Ut_Rotational_Speed_impact (+0.780)
Ut_Rotational_Speed_backswing Pelvis_Rotational_Speed_backswing (+0.776), backswing-downswing

time (-0.758)
takeaway-backswing time —

TABLE XIX
BASELINE + TEMPORAL + SPEEDS: REMOVED (PRE-FILTER) FEATURES THAT WERE HIGHLY CORRELATED WITH EACH KEPT FEATURE. ONLY FEATURES

REMOVED BY VIF FILTERING ARE LISTED, WITH PEARSON r (SIGNED).



E. Baseline + temporal + speeds + forces feature set

Figure 22 shows the remaining correlations between features after performing the VIF filtering step on the B+T+S+F feature
set.

Fig. 22. Baseline + Temporal Feature Set: Correlation heatmap between remaining features following VIF filtering procedure

Table XX shows the most highly correlated removed peers of each remaining feature.



Kept feature Removed pre-filter features (|r|≥ 0.70)

head_turn_takeaway head_turn_downswing (+0.709)
head_turn_impact —
head_tilt_takeaway UT_tilt_takeaway (+0.716)
head_bend_takeaway head_bend_downswing (+0.750), head_bend_backswing (+0.734)
head_bend_impact —
head_sway_takeaway UT_sway_takeaway (+0.704)
UT_turn_backswing pelvis_turn_backswing (+0.765)
UT_turn_downswing pelvis_turn_downswing (+0.733)
UT_tilt_downswing head_tilt_downswing (+0.795)
UT_thrust_takeaway head_thrust_takeaway (+0.770)
pelvis_turn_takeaway UT_turn_takeaway (+0.866)
pelvis_tilt_takeaway —
pelvis_tilt_backswing —
pelvis_tilt_impact —
pelvis_bend_impact UT_bend_impact (+0.919), pelvis_bend_downswing (+0.710)
pelvis_sway_takeaway UT_sway_takeaway (+0.886)
pelvis_sway_impact UT_sway_downswing (+0.919), pelvis_sway_downswing (+0.910),

UT_sway_impact (+0.864), UT_sway_backswing (+0.807),
pelvis_sway_backswing (+0.797), head_sway_downswing (+0.790),
head_sway_backswing (+0.739)

pelvis_thrust_impact pelvis_thrust_downswing (+0.842), UT_thrust_impact (+0.802),
UT_thrust_downswing (+0.777), pelvis_thrust_backswing (+0.736)

pelvis_lift_takeaway UT_lift_takeaway (+0.760)
pelvis_lift_downswing UT_lift_downswing (+0.889), head_lift_downswing (+0.706)
pelvis_lift_impact —
knee_angle_l_backswing —
knee_angle_r_takeaway —
knee_angle_r_impact —
elbow_angle_l_downswing —
elbow_angle_r_backswing elbow_angle_l_backswing (+0.811)
elbow_angle_r_impact —
wrist_angle_l_takeaway —
wrist_angle_l_backswing —
wrist_angle_l_downswing —
wrist_angle_l_impact —
Pelvis_Rotational_Speed_takeaway Ut_Rotational_Speed_takeaway (+0.770)
Pelvis_Rotational_Speed_downswing Ut_Rotational_Speed_downswing (+0.841)
Pelvis_Rotational_Speed_impact Ut_Rotational_Speed_impact (+0.780)
Fx_l_backswing —
Fx_l_downswing —
Fx_l_impact —
Fx_r_takeaway —
Fx_r_backswing —
Fx_r_downswing —
Fx_r_impact —
Fy_l_impact —
Fy_r_takeaway Fy_l_takeaway (-0.833)
Fy_r_backswing Fy_l_backswing (-0.861)
Fz_l_impact —
Fz_r_downswing Fz_r_backswing (+0.877), Fz_r_impact (+0.760)
takeaway-backswing time —

TABLE XX
BASELINE + TEMPORAL + SPEEDS + FORCES: REMOVED (PRE-FILTER) FEATURES THAT WERE HIGHLY CORRELATED WITH EACH KEPT FEATURE. ONLY

FEATURES REMOVED BY VIF FILTERING ARE LISTED, WITH PEARSON r (SIGNED).

APPENDIX E
INTERPRETABILITY FIGURES FOR SELECTED FEATURE SETS

A. Stacked regressor trained on B+T without dimensionality reduction

In the interest of brevity (and because the explanations aren’t particularly rich), we will present only a few choice
interpretations for the best performing B+T model.

The model’s predictive performance is pictured in Figure 23.



Fig. 23. Stacked Ensemble (No DR, B+T): Performance

a) Permutation Feature Importance: To begin, we examine the permutation feature importance for the stacked regressor,
pictured in Figure 24. As we hinted at earlier, including temporal features allows the model to learn a very simplistic pattern; a
shorter time between swing phases leads to a higher clubhead speed. This is undesirable since the interpretation provides only
trivially obvious coaching feedback. Interestingly, the upper torso turn and the right elbow angle again appear to be important
(although significantly less so than the temporal features).

Fig. 24. Stacked Ensemble (Vanilla, B+T): Permutation Feature Importance

b) ALE: In Figure 25, we see that the largest feature effect is attributable to the downswing-impact time. However,
pelvis lift during the downswing and upper torso turn at the top of the backswing still appear to have somewhat significant
effects.



Fig. 25. Stacked Ensemble (Vanilla, B+T): ALE Plots for Top 4 Features

c) Counterfactual Explanations: We present a counterfactual for a random instance from the test set in Figure 26. To
achieve a 6 mph increase in clubhead speed, the counterfactual optimizer found that this subject would only need to alter
two things. They would need to increase their upper torso tilt in the downswing by about a third of a standard deviation and
decrease their downswing-impact time by just over a standard deviation. In other words, ”swing faster”.

Fig. 26. Stacked Ensemble (Vanilla, B+T): Counterfactual for a Random Test Sample

d) SHAP: For completeness, we also present the SHAP summary plot for the stacked regressor trained on the B+T feature
set in Figure 27. Clearly, temporal features dominate in terms of impact on model predictions. In particular, shortening the
downswing-impact time and backswing-downswing time results in increased predicted clubhead speed.



Fig. 27. Stacked ensemble (vanilla, B+T): SHAP summary

1) Reliability of interpretations: As mentioned in Section II-F8, we retrained the model presented in this section 10 times
and aggregated the permutation importance (Figure 28) and SHAP values (Figure 29) across training runs to quantify the
variance due to the randomness involved in training.



Fig. 28. Stacked Ensemble (Vanilla, B+T): Mean and Standard Deviation of Mean Permutation Feature Importance Across 10 Training Runs

Fig. 29. Stacked Ensemble (Vanilla, B+T): Mean and Standard Deviation of Mean Absolute SHAP Values Across 10 Training Runs


