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Project Introduction 

The world is ripe with operating manufacturing facilities that are not implementing modern 

technology. Oftentimes, these existing manufacturing production systems would require 

enormous cost to revamp with modern industry 4.0 specifications. As such, these plants may be 

missing out on unrealized productivity that modern technology could bring. This project aimed 

to design sensor nodes in a low-power-wide-area wireless network (LPWAN) which can tie into 

the existing plant control systems to provide additional information. This information could then 

be used for monitoring, preventive maintenance, or tie into control systems based on the 

applications.  LPWANs are highly efficient and send information at low data rates, which can 

allow nodes to run on battery for tens of years [1]. LPWANs also have the capacity to connect 

with many nodes at once over a long range [1]. Thus, LPWANs running cost are less than 

traditional alternatives such as Bluetooth or Wi-Fi which have lower range and are less energy 

efficient. A higher range means that a facility would likely only need one or two gateways to 

send sensor information to the internet, while a longer battery life requires less maintenance 

hence cost savings.   

The sensor nodes should be able to sense changes in the manufacturing process, then map 

those changes to real world events. Each node will be able to do all processing onboard, this 

makes integration of the nodes as simple as possible. Each node will be able to share the data it 

gathers through an LPWAN and make it widely accessible. Existing control systems should be 

able to read the sensor node data and be able to make changes to the manufacturing process in 

real time. These remote nodes can then be placed alongside the existing manufacturing process 

in order to gain additional data that can improve the existing architecture. The nodes will serve 

as an easy to install sensor that can provide information beyond the current systems. All while 

being done without the need to overhaul the entire sensor network; the nodes can simply be 

installed to the desired location and turned on. Having these sensor nodes put in well thought out 

locations across the manufacturing production system may result in a more efficient running 

operation, while costing very little money to install. Our project statement for the project is as 

follows: 

A way to implement modern sensor and data processing techniques in aging 

manufacturing facilities to improve plant efficiency.  
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Need and Constraint Identification 

Project Need 

Manufacturing production systems strive to be as efficient as possible, but plants built before 

the rise of Internet-of-Things (IoT) do not have the equipment to implement modern data 

processing techniques. The barrier to entry to IoT implementation is the enormous cost 

associated with overhauling the entire production sensor network. Instead, by inserting sensor 

nodes in key areas of the production system, some benefits of IoT can be gained for a fraction of 

the cost. These sensor nodes can do additional monitoring, or for data collection to be further 

analyzed to optimize the system. The nodes being designed are not intended to be a substitute to 

existing sensors, these existing sensors are typically more specialized. In contrast, the sensor 

nodes being designed should be very flexible, the sensing and processing techniques should be 

applicable to a large array of objects. This makes the sensor nodes very viable in existing 

facilities since the nodes are equipped for a wide range of sensing applications. An analysis of 

the current solution landscape also shows a lack of full integration from sensor to network to a 

control system, especially when considering low power technology.  

Constraint Identification 

The scope of our project will be constrained by predetermined factors such as resources, 

budget, knowledge, and time. The timeline of the project is set by Dr. Kenneth Chau who has set 

a final due date of April 15, 2022. Throughout this time frame our group is expected to complete 

several checkpoint deadlines such as the submission of this project definition report due on 

November 12th, a conceptual design presentation held throughout the weeks of November 15th 

to December 6th, an oral poster presentation held on April 11th, 2022, and the final report due on 

April 15th, 2022, to end the project. Further adding to our time constraints, our group's hands-on 

time with the smaller scale production equipment we will use to experiment our sensors on, will 

be limited by the availability of the lab, EME 2220, and our group's access to it. As well, the 

time our group members can dedicate to this project can also be considered. 

While the group possesses some initial knowledge about components involved in the project, 

individually our group members will still have to research certain topics in order to fill in 
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potential gaps which may arise as we progress into the complexities of our solution. Therefore, 

our previous technical knowledge can also be considered a constraint affecting our scope. The 

initial resources provided by our faculty advisor Dr. Dean Richert included: a microcontroller, a 

transmitter, an auditory microphone and a gateway used to establish connection. Outside of these 

components, any extra resources needed to be purchased using the $300 budget provided by the 

School of Engineering.  

A further constraint of our project is to keep in mind the low power aspect goal of our design 

and as such, our group is tasked with designing the optimal solution that maintains this 

requirement. While there exists many alternatives that would provide faster processing and 

communication speeds that draw higher power, our unique solution will strive to extend battery 

life and meet these other requirements as it can. 

While we were luckily provided with most of the equipment necessary to complete our proof 

of concept, some were outdated or less efficient which prevented us from optimizing our 

solution. However, we were able to predict performance of a sensor node based on optimal 

components, shown in the Future Improvements section of this report. 

In correspondence to the ongoing COVID-19 pandemic all provincial, local, and university 

restrictions and policies will also have to be observed and upheld. Unless necessary to meet 

virtually, in person meetings will be conducted with appropriate social distancing measures, 

masks, sanitation supplies, and other advised materials. 

Stakeholder Analysis 

A project of this scale involves many parties that are either working on the progress, or 

expecting the results. Among the stakeholders working on the outcome is Capstone Group 61, 

and Dr. Dean Richert, an assistant professor at the University of British Okanagan. Dr. Richert is 

the faculty advisor for the project who put forward the project idea and serves to guide our group 

regularly in weekly meetings, as well as provided us with initial resources to start the project. 

The members of group 61 chose to undertake this project and have to actively complete 

deadlines for evaluations for the capstone course ENGR 499 and as well are working to complete 

this project and to compete at the end of the academic year against other capstone groups to win 
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the respective category. Dr. Dean Richert and the members of group 61 share in any potential IP 

that is generated as a result of this project, thus they have a unique investment in this project 

compared to other stakeholders. 

The other stakeholders in this project are Dr. Kenneth Chau and the School of Engineering 

who expect to receive the project deliverables and act as our bosses for the project. Dr. Chau is 

the course instructor for capstone and has set our deadlines and ultimately grades our work with 

our faculty advisor for our course mark. The School of Engineering is funding the project budget 

of $300 and also providing the course as a requirement for the Bachelor of Applied Science 

degree our group looks to complete from the University. 

As well, future stakeholders could be considered in our project as our solution could be 

implemented by groups currently unknown to us. Not only will our solution be of interest but the 

steps of our process as well in order for them to understand how we got to each point and for any 

adaptability or troubleshooting they need to do. While our solution will be specifically made for 

acoustic sensors in theory the sensor network we implement will be able to work with different 

kinds of sensors making its range of problem adaptability wide for many applications. 

Beyond this, the manufacturing industry as a whole serves to gain from any potential 

findings in this project. Breakthrough designs, or unique insights to low power sensor networks 

can act to further the industry as whole. Thus, while the industry has no influence on this project; 

it should be considered how this project fits into the bigger picture, and what would be 

considered a success considering past projects. 

Lastly, end users such as manufacturing plant operators can positively benefit from this 

project. An acoustic sensor network could work to reduce operating costs, and improve overall 

plant efficiency. Thus, facilities that implement the sensor network designed in this project could 

be positively affected. 

Current Solution Landscape 

Predictive Maintenance (PdM) techniques are a method implemented with sensing 

technology that proactively monitors systems to detect failure early and initiate a fix. A similar 

concept, Preventative Maintenance, still has the same goals of early failure detection but is based 
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on scheduling of a routine check instead of constant monitoring and as such can still lead to 

failure in between checks. A study done by the company SKF that tested 30 identical bearings 

and found that the time to failure varied widely between 15 to 300 hours which made it difficult 

to foresee failure time and set a maintenance interval [2]. In this case implementing PdM would 

prevent under and over maintenance as well as increase worker safety, and reduce material waste 

[2]. 

The idea of implementing additional sensors to monitor a system is not unique to this 

project. The key element to this project is the low power element, and the ability for the nodes to 

tie into existing control systems. It is easy to find sensor nodes that require an electrical power 

supply, but very few solutions exist that are battery powered let alone have the infrastructure 

behind them to link to common control systems like a PLC. Being said, there are projects that 

have implemented technology similar to this project. For instance, in 2018 the City of Calgary 

implemented a LPWAN acoustic sensor node network throughout their city to measure the noise 

level and report any potential public disturbances [3]. These nodes would measure the average 

noise level at the node, then if the decibel level was over a specific threshold it would send an 

alert that could be further investigated in person [3]. The sentiment of the project was to reduce 

costs associated with noise complaints by proactively pursuing them as they occur. The hardware 

used in this project is very similar to what is required for this project, however the software side 

will vary greatly. The City of Calgary project is closely related with monitoring the noise level 

and identifying particular sounds, while our project is using past sensor data to investigate 

changes in the environment. These changes in pressure waves could be an object sliding off of a 

conveyor belt, or a motor grinding due to a lack of lubrication. This highlights the difference in 

software between the projects, where our machine learning algorithm needs to be tuned to detect 

these changes for a specific application. The other differentiating factor is that the City of 

Calgary simply required a sensor network to passively monitor sound levels, then a person must 

act on the warnings sent by the nodes. Whereas our project will be able to connect with existing 

control systems through a common medium. This means that our sensor nodes do not need to be 

specifically monitored in a dedicated location. They can instead be implemented into existing 

human machine interfaces (HMIs), or the sensor data can be acted on by a programmable logic 

controller (PLC), instead of requiring human intervention. 
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Other projects, such as that in [4] implement a microphone in order to monitor the sound 

emitting from a fan. The continuous stream of data is then analyzed to determine if the fan 

should be relubricated. The system implemented is very bulky, expensive, and would require the 

entire motor housing to be revamped in order to be implemented since the system is wired to an 

electrical source. This project is designed to be a substitute for these projects, while being 

cheaper, and much easier to implement. The important distinguishing factor between a wired 

connection and battery powered is the transmission frequency. Sending data at a millisecond rate 

would quickly consume power, and make a small battery operated node unfeasible. Thus, this 

project is designed for employment in situations where extremely quick response time is not 

vital.  

Finally, there are projects such as that in [5] that implement a wireless sensor network 

(WSN) into industrial environments. The project in [5] uses a WSN to track the axle temperature 

for a freight train to ensure the heat generation does not exceed design limitations. The project 

uses low power sensors spread out beneath the train to monitor the temperature using a 

temperature sensor [5]. The solution was found to be accurate, while maintaining a low cost [5]. 

This WSN implementation is a great model for what this project aims to accomplish. The 

defining difference is again the use of the output signal from the sensor network. The project in 

[5] did not incorporate the signal into control of the train, instead it just warned the conductor. 

This is a common theme of existing WSNs, they collect data, but the data must be interpreted by 

a human to be acted on. Implementation into a control system reduces human intervention, which 

improves overall efficiency, and decreases likelihood of errors occurring. 
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Discussion of Design and Implementation 

Chosen Proof of Concept 

To demonstrate the viability of the wireless sensor node, we opted to develop a proof of concept 

that demonstrates the projects’ purpose. The proof of concept will work to classify on a small 

FESTO work machine that detects whether a workpiece has a lid on it. The workstation is shown 

in figure 1 below. 

 
Figure 1: FESTO Workstation 

The operation of the workstation is as follows. A workpiece is set on the left side of the conveyor 

belt, marked starting point on figure 1. Once detected by an initial sensor, the workstation arm 

will pick up the workpiece, rotate and place the piece on the measuring station. The measuring 

station detects if the workpiece has a lid or not depending on the measured distance from sensor 

to piece. The workstation arm will then pick the piece back up and place it back on the conveyor 

belt. The conveyor will carry the piece right, then if there is no lid a controllable lever will 

extend and push the workpiece down a ramp. Otherwise, if the piece has a lid the lever will not 

move, and the piece will move to the end of the workstation. The purpose of this automated task 

is to divert pieces that do not have a lid, presumably indicating a workpiece that missed a step in 

the line of production. The workstation is controlled by a Siemens PLC which is what the node 

will relay all information to for controls. 
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Using this simple workstation, we can come up with four interesting cases that a sensor node 

could listen for. The most obvious three are for a workpiece with no lid, a workpiece with a lid, 

and nothing on the conveyor belt. The final case we decided to classify for is the case of a 

jammed workstation arm. Through testing we found that two consecutive workpieces placed one 

after another tended to jam the workstation arm in the down position, effectively stopping the 

entire process. The jam requires human intervention to remove the workpiece or to manually 

retract the workstation arm. 

To differentiate between these cases, we opted to use onboard machine learning for each sensor 

node. This means each sensor will read in audio data, classify it, then transmit the data back to 

the PLC. Machine learning may not be needed for such a simple classification scheme, but the 

ultimate purpose of a sensor node is to be implemented in environments that are potentially 

complex. In these environments, machine learning is essentially required to produce effective 

classifications. Additionally, using machine learning allows the sensor nodes to be easily 

implemented if produced. That is, all that would be needed to introduce a sensor node to a 

manufacturing facility would be to collect sufficient training data, then simply train the classifier 

with the data. This makes the sensor network extremely portable since the groundwork for the 

machine learning network is already in place and therefore implementation should be seamless. 

With this general proof of concept knowledge in mind, we can continue to discuss the solution 

that we developed. 

Machine Learning Classifier 

Seeing as this project relies on robustness and accuracy of classification, it is key that a strong 

machine learning (ML) classifier is developed to meet the demands of a manufacturing plant. 

Should the classifier be too inaccurate, it would entirely defeat the purpose of the sensor. This is 

because the sensor is meant to be complimentary and hassle free, providing an easy to implement 

alternative to traditional wired or integrated sensors. False classifications that result in process 

delay are costly and thus the classifier should be over 99% accurate according to the initial 

prototype specifications. This number should be much higher in an actual manufacturing facility 

where 1 time in 100 is far too often for an error to occur. With this accuracy specification in 

mind, we can proceed and discuss the ML design process. 
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Before recording, the microphone is set to record at its designed operating frequency of 48kHz. 

A higher sampling rate is desirable as it allows us to detect higher order frequencies in the 

sample data. These higher order frequencies may be of interest depending on the events 

examined later. Being we are using a microelectromechanical microphone, the power draw is 

very low for a digital microphone. This means the tradeoff between high frequency operation 

and power draw is worth making due to the small relative size. 

Before any classifier is developed, the sensor data must be translated to meaningful features 

which can be used for classification. To effectively communicate the design process, images of 

the feature data is shown as it is transformed to the final meaningful data. A sample audio signal 

for the initial raw data is shown in figure 2 below. This clip shows an 8-second audio sample of a 

workpiece traveling through the workstation without a lid. 

 

Figure 2: Raw Audio Data Plot 

There are a few initial issues with the raw data. First, there is a very large high frequency spike 

when the microphone begins to record. This was explained upon referencing the microphones 

datasheet and noticing that the microphone is not designed to detect frequencies below 50Hz [6]. 

Being that this issue only occurs during the initial recording of the microphone we decided it was 

best to ignore the first 60,000 (~1.2 seconds) that the microphone records. Doing so we get the 

audio plot shown in figure 3. 
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Figure 3: Raw Audio Data Trimmed 

The first point of interest regarding the audio data in figure 3 above is that an event can occur 

anywhere within a sample window. This means that the raw sensor data cannot be used for 

classification since the meaningful data can be anywhere within the recorded audio window and 

a model would tune a classifier parameter inconsistently. This leads us down two possible design 

paths, either to use advanced ML algorithms, or to perform extensive feature engineering to 

extract meaningful data from the audio sample. 

Advanced ML algorithms such as the long short-term memory (LSTM) algorithm can interpret 

sequences of data, as opposed to single data points [7]. This allows it to interpret time-based 

datasets, effectively eliminating the problem relating to identifying where an event occurs within 

a dataset. This initially sounds great, but there are significant issues associated with this 

technique. Firstly, algorithms such as LSTM are extremely technical and require advanced 

libraries to implement. A few students within our group are proficient in ML, but not masters. 

This makes implementing advanced classifiers hard due to the lack of background knowledge in 

the field of deep learning. As a group, we feared that delving into an advanced topic within a 

field in which we have no background would lead to a solution we were incapable of 

understanding fully. Additionally, advanced Python libraries are great for Raspberry PI 

implementation but add additional computational requirements to the sensor nodes. As well, 

standalone processors often run C/C++ which has a less broad library network for potential ML 

implementation. 
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With the pro/cons of advanced ML algorithms in mind, we opted to implement a more traditional 

classifier that reps less computational costs and a more transparent implementation. To do this, 

an effective feature engineering algorithm must be developed to compensate for the variations in 

the time domain start point. With this feature engineered vector, we can train a logistic 

regression classifier. A logistic regression model can be trained on a plant computer using 

training data, validated using testing data, then the entire model can be ported to the 

microprocessor simply by importing the model’s coefficients using a thumb drive or even 

through the internet using something like FTP. The logistic regression has the advantage of being 

a simple combination of multiplications and additions which makes it easy to implement without 

additional bulky libraries or undue computations. Importantly, the decision to implement a 

logistic regression means potentially thousands of multiplications must occur for each 

classification depending on the microphone sample rate and length of classification window. 

Thus, it is vital that the chosen microprocessor/processor has an onboard floating-point unit 

(FPU) block on board. FPUs are dedicated chips for addition/multiplication with floating point 

numbers (non-integers) which drastically decrease the time taken to compute the class for a data 

sample. 

Notice that from figure 3, there is significant ambient noise overlayed on top of the meaningful 

peaks within the sample. These noise-generated peaks introduce a problem when determining 

where an event starts within a data set, as they may falsely indicate the start of an event. Thus, 

the next logical step is to implement a filter to reduce the noise. Examining a data sample 

involving only the background lab noise we found that the background noise is concentrated 

below 130Hz. Thus, a high-pass filter (HPF) is tested and implemented to reduce the undue 

lower order harmonics.  

Filter Design 

By experimentation, we found that a Butterworth filter with an order of 6 and a cutoff of 150Hz 

resulted in the best filter design. While an order of 6 means a relatively dull cutoff, it is an 

optimal balance between computational constraints and filter effectiveness. The frequency 

response of the designed HPF is shown in figure 4 below. 
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Figure 4: High Pass Filter Frequency Response 

By convolving the filter designed with the audio signal we can get a filtered audio signal. This 

signal has clear peak values and being that each peak correlates to an audible event we can 

classify the data easier. Before filtering is done, the raw data is mean centered then normalized 

by the standard deviation. This technique allows for the audio data to look similar when the 

sensor position is changed nominally. For implementation in a real sensor node, the mean 

centering and normalization can be overlooked. The centered, filtered audio signal is shown in 

figure 5 below. 

 

Figure 5: Centered and Filtered Audio Signal 

Feature Engineering 

Upon examining figure 5 above, it is clear that there exist both positive and negative signal 

values throughout. To reduce variability within the data, we opted to take the absolute value of 

the signal shown in figure 5, this results in the figure shown in figure 6 below. 
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Figure 6: Absolute Value of Previous Audio Signal 

Notice in figure 6, there are over 400,000 samples which means there would be over a million 

multiplications required in order to classify the sample. To rectify this issue it was found that 

down sampling the data resulted in a smaller sample size which resulted in faster classification 

speed. Down sampling is done by grouping together 1000 samples then taking the average 

between them and reducing the 1000 samples to a single new sample that is the average value 

between them. This scales down the dimensionality 1000 fold, hence saving precious time and 

energy requirements. The down sampled audio sample is shown in figure 7 below. 

 
Figure 7: Down Sampled Audio Sample 

Now, the feature engineering is nearly complete; the final aspect is to align the window of data 

with the start of the event. After experimenting with an appropriate threshold size, we found that 

a spike with magnitude greater than 0.35 indicates true start of an audio event. If there is no peak 
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above 0.35, we can reduce the data sample to zero and deduce that it is simply ambient noise. 

Additionally, all events for the proof of concept only take 8 seconds which correlate to 

approximately 350 down sampled samples. Thus, we can align the event within the classification 

window by aligning the start of the window with the first occurrence of a peak greater than 0.35, 

then including the following 350 samples following. The resulting shifted audio simple is shown 

in figure 8 below.  

 
Figure 8: Shifted Audio Sample 

The audio sample in figure 8 has properly windowed around the event and made clear the 

prevalent peaks in the data. The technique mentioned is robust and allows for the event to occur 

anywhere within an audio sample. The number of samples is also reasonable, meaning there are 

only about a few thousand computations to be completed per classification. 

The final step in designing a classification algorithm is to simply train a logistic regression 

classifier. This was done using a Python library called SkLearn. SkLearn saved time manually 

training a classifier, and instead we simply saved the coefficients for the model to a CSV file 

which can be transferred to the microprocessor. To show the power of the feature engineering 

algorithm mentioned, we can plot each case for the proof of concept and overlay each sample 

within each case. For the proof of concept, we had four cases being lid on, lid off, jammed pieces 

(called consecutive pieces), and ambient noise. The training data has 10 samples per case; thus 

we have 40 audio samples which are plotted after having their features extracted. This plot is 

shown in figure 9 below. The Python script to do the feature engineering and train the classifier 

is shown in Appendix A. 
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Figure 9: Feature Extracted Data Plots 

Classifier Accuracy 

By examining figure 9 above it is clear that the feature engineering aligned the data samples 

excellently. The dark lines indicate that like samples are in sync within the window, this is key to 

a well-behaved classifier. With the classifier trained using the data shown in figure 9, we tested 

the data against a similar set of testing data. The testing data was collected during the same 

session as the training data, thus a well performing ML classifier should classify the testing data 

well. By classifying each data sample, then comparing with the audio samples true test case we 

can gather an accuracy for the classifier. Doing so we found that the classifier we trained is 98% 

accurate. The data gathered is shown in a confusion matrix in figure 10 below. 

 
Figure 10: Classifier Confusion Matrix 

Although our aim was to develop a classifier with 99% accuracy, we opted to settle with a 98% 

accuracy classifier. This is not a large compromise and is reasonable for the purpose for this 
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proof of concept, where the ML algorithm a single piece of the larger puzzle that is the 

construction of the entire sensor node. 

 

Real-Time Classification 

Classification of the audio sample is done on board the sensor node. Thus, the logistic regression 

model coefficients must be stored locally on the microprocessor which can be used for 

classification. This means the coefficients must be ported from the computer where training 

occurred to the target sensor. This was done using a USB drive to transfer a CSV file between 

the devices. With the model accessible from the sensor node, we can move forward with the real-

time classification technique. 

For the sensor nodes to be feasible in a manufacturing facility, they must be flexible in terms of 

classification periods. Meaning that two events should be able to occur in sequence with little 

time difference in between events. This introduces a unique challenge where events can occur 

anywhere within time, but the events can only be correctly identified after the sensor data has 

been processed. There are two issues that result by using a singular windowing technique. First, 

events that span two windows lose information and their classification will be missed. Secondly, 

two events occurring in a single window will fail as the current feature engineering solution will 

only detect the first event occurrence. 

These issues seem to render the idea of a singular windowing method useless but examining how 

manufacturing plants typically operate can give insight to these problems. Manufacturing 

facilities are finely tuned systems, and there is often little randomness involved within the system 

timing. Thus, we can assume that events are periodic and predictable by nature. This allows us to 

construct a single window that is timed such that the event of interest is guaranteed to fall within 

the window. Consider the following scenario to illustrate the idea; a plant has unstable objects 

coming down a conveyor belt where they stop and are measured. Suppose we want to implement 

a sensor to listen to detect if the object tips over. If an object of interest enters the specific area 

every 20 seconds the sensor can listen for 15 seconds, classify the data, and send the information 

then begin to listen 5 seconds later. Being that the event is predictable and periodic, the sensor is 

tuned to always be alert when a workpiece enters, then classify during downtime between 
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potential events. Figure 11 below illustrates the process timeline in terms of both the event and 

how the system listens and performs computations. 

 

Figure 11: Real-Time Classification Windowing Technique 

We can now apply the windowing technique to the specific proof of concept for this project. 

Considering each workpiece takes approximately 8 seconds to process through the system we 

assumed that the pieces arrive 25 seconds apart. We then opted to use a 20 second window, 

which leaves for 5 seconds of processing and sending the resulting data.  

With a 20 second window, the ML classifier was able to run from start to finish in under one 

second. The method was validated through testing where the classifier operated as intended, both 

classifying correctly and working regardless of event location within the time sample. The 

communication strategy is the focus of the next section of the report, but we were able to achieve 

under 1 second transmission speed from sensor node to PLC. This means the total computation 

plus transmission time is under 2 seconds which places the node well within its allotted 5 

seconds time frame for computation and communication.  

Communications 

This section relates to the communication used to transmit data from the wireless sensor node to 

the PLC. This includes a few key components which are discussed below. 

LoRaWAN 

The main communication method in this project is the use of Long-Range Wide Area Network 

(LoRaWAN) technology for transmitting sensor state values to the gateway. Our transmitter was 

setup for communication using the North American specification. This transmitter sends 
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hexadecimal byte data across a LoRaWAN network, the bytes are then received at an IoT 

gateway. LoRaWAN allows for network versatility as many device parameters can be adjusted to 

fit the application. This transmitter uses Activation by Personalization (ABP) and operates under 

the North American frequency band of 902-928 MHz [1]. Example python code for joining the 

ABP network is shown in Appendix B. Figure 12 demonstrates the correlation between data rate 

(DR), spreading factor (SF), bandwidth (BW), bitrate (BR), and range configurations for the lora 

module. Our transmitter was configured with high a DR of 4, and SF8 as our proof-of-concept 

was not configured for long-range connectivity. These settings allowed the maximization of BR 

without compromising any range capabilities. This is important as real-time applications rely on 

speed to meet critical deadlines. Table 1 below summarizes these settings. 

 
Figure 12: Common LoRaWAN data range, spreading factor, bandwidth, and bitrate correlation. 

Activation ABP 

Data Rate (DR) 4 

Spreading Factor (SF) 8 

Bandwidth (BW) (kHz) 500 

Bitrate (BR) (bps) 12500 

Tx Frequency (MHz) 902-928 
Table 1: Summary of LoRaWAN configurations. 

Once the state of operation is determined by the machine learning algorithm, the data is 

transmitted by the LoRa device to the receiving network gateway using a hexadecimal key. This 

value is sent to the gateway with a payload that is base64 encrypted along with information about 

the device such as its identification number. 

MQTT 

Once messages are received by the Tektelic gateway, the data is stored on a Tektelic backend 

server which can be accessed via a web browser using login credentials. Using the backend 
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server, we were able to configure and push Message Queueing Telemetry Transport (MQTT) 

messages to an MQTT broker. MQTT is an industry standard messaging protocol which uses a 

publish and subscribe architecture to send messages between remote devices while minimizing 

bandwidth [8]. We chose to use the HiveMQ broker hosted at ‘broker.hiveMQ.com’ where we 

configured a topic ‘v2/pushCapstone’ that all the base64 encoded transmitter messages would be 

pushed to. Figure 13 displays the flow between the MQTT client and broker with the respective 

subscription topic. From there, a local python script subscribes to the topic and pulls the 

messages, as shown in Appendix C, where they are decoded and pushed to the OPC-UA server. 

 

Figure 13: MQTT Topic Flow 

OPC-UA 

Open Platform Communication Unified Architecture (OPC-UA) is a widely used communication 

protocol between machines in industrial automation. A server was established on the stations 

PLC to provide the source of information, in our case, variables in a data block to update the 

station state. Using a local computer as a client to connect to the server through URL our group 

established a connection to read and write onto the PLC data. Through this connection our group 

was able to update in real time the station state variable from MQTT Client to PLC. With the 

state now updated our PLC was able to display the changes on the HMI to accurately display the 

monitored event. Figure 14 below shows a screenshot of the HMI in default state, and once it 

receives from the microprocessor that ambient noise is detected. 
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Figure 14: HMI Display Changing States 

The flow of information within the proof of concept is shown in figure 15 below; it captures the 

entire lifecycle from audio emitting event to PLC input. 

 

Figure 15: Proof of Concept Information Flowchart 

Proof of Concept Hardware 

One of the most important aspects of this project is the hardware chosen for the sensor nodes. 

Each node is designed to run for 10 years according to the project specifications; thus, the 
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hardware should be very low power devices accompanied by large batteries. Regardless of the 

hardware chosen there are three crucial aspects of the sensor node, these being the 

microprocessor/processor, microphone, and transmitter-gateway pair. The microphone will read 

in audio data, then the microprocessor will analyze the data where it will be sent to a transmitter 

which relays the data to a gateway. The gateway uploads the data to the internet, finally the PLC 

can pull the data and act accordingly. 

For this project, we opted to demonstrate a proof of concept of this process. Given the time and 

monetary constraints of the project we decided to focus on the functionality of a sensor node. 

This included getting a prototype working, but not abiding by all the specifications already 

determined in the initial project definition report. As a result, completion of this proof of concept 

will demonstrate the feasibility of the idea; but the model will not be directly implementable in a 

manufacturing facility. 

With this in mind, we decided to choose hardware for the project that is popular and easy to use. 

This prevents time spend debugging issues that may have little to no online support. 

Additionally, we opted to use hardware provided to us by our project supervisor and faculty 

advisor Dr. Dean Richert. Given Dr. Richert’s background in wireless sensor nodes, it is logical 

to use equipment he is familiar with as it allows us to have additional avenues for support 

through him. 

Microprocessor Choice 

We opted to use a Raspberry PI 3B+ as a microprocessor. PIs are essentially small configurable 

desktop computers, they have an onboard processor, RAM, wireless Wi-Fi, four USB 2.0 ports, 

an HDMI port, and a GPIO header [9]. The PI also has an onboard floating-point unit which 

makes it optimal for doing consecutive numeric calculations. Raspberry PIs are very popular and 

user friendly which cuts down on development time. The drawback with the PI is that it draws 

12.5W power at maximum load. This is many orders of magnitude off of what a low power 

device consume, thus it cannot be implemented in a long-lasting sensor node. Being said, 

anything implemented on the PI can be done on a less-user-friendly processor that has more 

desirable power draw. Thus, the PI is the perfect choice for the proof of concept. 
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Microphone Choice 

The onboard microphone decision has a few different angles. First, the microphone should have 

a high sampling frequency. According to Nyquist’s sampling theorem, in order to detect a given 

frequency we must sample at twice the given frequency [10]. Accordingly, a high frequency 

microphone will be able to pick up detect additional frequencies which may be crucial depending 

on the events frequency domain characteristics. The next, and most important microphone 

property is the devices power consumption. Power draw is critical for sensor nodes battery lives 

as mentioned earlier. The final, and least important aspect of the chosen microphone is its output 

data format; being either analog or digital.  All microphones are analog by nature but ensuring 

the microphones output data format aligns with the microprocessor capabilities is required for 

them to communicate.  

With all these aspects in mind we opted to choose the Adafruit I2S MEMs microphone. The I2S 

is a low power, digital output microphone, that is designed to operate at 48kHz. These properties 

designate it as a great choice for both the proof of concept, and for the final sensor node 

construction. 

Transmitter-Gateway Choice 

The last consequential hardware to select is the onboard transmitter, and the gateway it connects 

to. These pieces of hardware should provide reliable communication, data encryption, and be 

able to transmit the required 2-bits representing the classified event every ~20 seconds to be 

consistent with the designed classification technique. Lastly, the pair should communicate using 

LoRaWAN and consume a low amount of power. These requirements are specifically for the 

transmitter, the gateway only must be reliable and capable of communicating with the 

transmitter. We opted to choose the RN2903 LORA(R) MOTE transceiver module as it fulfills 

all requirements demanded of the transmitter. The only pitfall of this transceiver module is that it 

is a few years old and draws more power than newer versions. The corresponding gateway used 

is the Tektelic Kona Pico which is now obsolete to its successor which has upgraded features 

such as a four hour backup battery and an integrated 3G/4G cellular modem [13]. 

All the components used for the proof of concept, as well as their power draws are shown in 

table 2 below. 



   

 

27 

 

 

Table 2: Proof of Concept Hardware Components 

Proof of Concept Performance 

The final proof of concept electrical hardware setup is shown in figure 16 below. Note that the 

processor-transmitter-microphone bundle are the components of the sensor node, the gateway is 

physically separate from the node. 

 

Figure 16: Proof of Concept Electrical Hardware 

The resulting sensor node proved to be extremely effective. We measured the sensor to be over 

95% accurate under ideal lab conditions. However, any “unknown” lab sounds, such as people 

talking triggers the ML algorithm incorrectly and the results become unreliable. Furthermore, 

any small changes in the actual workstation result in completely unreliable results. For instance, 

should the workpiece be placed awkwardly on the belt and take an extra few tenths of a second 

to slide down the conveyor belt, the resulting classification is unreliable. The final Python script 

used in the proof of concept is shown in Appendix D. 

The largest issue associated with the proof of concept is the communication between the onboard 

transmitter and the gateway. The issue was Over the Air Activation (OTAA) not properly 
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connecting therefore we were required to implement Activation By Personalization (ABP). ABP 

uses a fixed device address, fixed security, and fixed network parameters which require manual 

configuration and may cause uplinks and downlinks to not function properly [17]. This resulted 

in the transmission speed between sensor node and gateway to take upwards of 3 seconds. 

Though we could not fix this issue, we suspect the error is a result of the proof of concept using 

relatively old hardware and a new transmitter would rectify the issue. Another potential source of 

error is the distance between transmitter and gateway. LoRaWAN is meant for long range 

transmission, but in this proof of concept the pair were less than five meters away from one 

another. Increasing the distance between transmitter and gateway would place then within 

optimal communication distance and allow for my effective transmission. Ultimately, this error 

is minor and can be rectified easily through additional testing which requires additional time we 

do not have. 

The proof of concept developed demonstrates the concept of the project and does so effectively. 

It acts to show the viability of sensor nodes in manufacturing plants. The next section is 

dedicated to discussing future improvements to the sensor node to make it widely 

implementable. 
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Future Improvements 

While there are many manufacturing facilities that have implemented Industry 4.0 sensor 

technologies, there is still a sizeable group that is not as modernized that would benefit from 

implementing something like a network of the sensor nodes proposed in this document. For these 

production systems our sensor nodes could be implemented seamlessly in addition to their 

existing layout. Our solution would be cost effective and easy to integrate, making it a more 

appealing option for companies that do not want to invest into a more costly revamp of their 

systems. The LPWAN network can be easily established with a few gateways to connect all 

sensor nodes to the network. 

Machine Learning Algorithm Improvements 

Having discussed the detailed algorithm in the previous section leads us naturally to the potential 

improvements. Potential improvements in the machine learning section are merely observational 

and further testing is required to validate any speculations.  

The first method to increase the performance of the ML implemented would be to examine the 

classifier used. The logistic regression model implemented is simple and not robust, meaning any 

small changes to the time domain signal results in inaccurate classifications. Adding more 

complex deep learning algorithms has the potential to increase reliability of the classifier and 

thus make it more likely to be implemented in industry. Potential classifiers to examine next 

include the LSTM mentioned prior, or premade libraries such as tensor flow. As mentioned 

prior, these libraries and advanced learning methods may come with the caveat of increasing 

processing requirements which may push computation times beyond the desired time frame. 

Should a more sophisticated classifier be implemented, it would be of interest to look at scaling 

back the feature engineering done. Feature engineering was required to make up for the fact we 

implemented a rather dull classifier, thus a more advanced model may need less help in order to 

pull out the desired features from the audio data. Performing less feature engineering may free up 

additional time for the classifier to work, thus a tradeoff may be possible between a more 

advanced training model and less pre-classification computation. 
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Real-Time Classification Improvements 

The initial classification technique assumes that there is time for computation between events 

occurring. But what if the events are back-to-back, and there is not time for the node to perform 

computation between events occurring? This introduces the need for parallelization of events. 

The most effective improvement to the classification method is to introduce multithreading. 

Multithreading allows specific cores on the processor to handle specific tasks, and thus eliminate 

the series occurrence of recording, then classifying. With multithreading, a singular core could 

read in sensor data then pass the data off to a separate core for classification and transmission. 

Provided the separate thread could perform its action quicker than the window length, the 

microprocessor will work as intended. Multithreading is the easiest technique to guarantee 

correct timing for periodic events. 

Should the events not be periodic, more sophisticated windowing techniques are needed. This 

could include multiple overlapping windows that are able to capture the event, or even 

implementing algorithms that do not begin recording until a specific threshold or occurrence. 

Note that these windowing techniques likely also require multithreading to operate effectively. 

Hardware Improvements 

The proof of concept developed is complete and functional, but it is not fit for implementation in 

a wireless sensor node. This stems from a few issues. The first is the electronic hardware used in 

the prototype. The “microcontroller” used in the prototype is extremely power demanding and 

must be addressed for feasible implementation. Additionally, for a wireless sensor node we must 

choose corresponding batteries that can power the desired microcontroller. The next 

improvement lies in the transmitter used; the proof of concept uses an old and power heavy 

transmitter that can be refreshed to improve sensor node lifespan. We can then use these 

components to calculate the power draw of the entire sensor node to estimate the shelf life of the 

node. 
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Microcontroller 

For industry application, it would be desirable to use the lowest-powered microcontroller 

available instead of the Raspberry Pi used in our implementation. After some research, it appears 

that the microcontroller with the best ULP (ultra-low-power) bench score is the ON 

semiconductors RSL 10 chip [11]. It has a bench score of 1090, which is derived from the 

inverse of the average power consumption in μW over 50 iterations, multiplied by 1000 [11]. 

This means that the processor consumed about 1μW while operating during the test. By our 

estimation, according to the datasheet for the processor, it would consume approximately 2.25 

mW on average when in use [12]. The chosen microprocessor is skewed towards power use and 

does not have optimal performance specifications. For instance, the RSL10 does not have an 

onboard FPU which may be problematic. Accordingly, while our best estimations are that the 

processor is adequate, additional testing is required. An image of the chosen microcontroller is 

shown in figure 17 below. 

 

Figure 17: Chosen Optimal Microprocessor [12] 

Batteries 

Our selected battery, the EEMB ER34615 will be deployed in packages of 4. With each having 

an energy capacity of 19,000mAh or 68.4Wh, each node would have a total of 273.6Wh at its 

disposal [13]. The battery was selected as it is a lithium thionyl chloride battery which boasts 

low self-discharging at about 1-2% per year [14]. Additionally, these batteries offer high energy 

densities which allows to pack more energy in a smaller form factor [14]. The final advantage of 

these batteries relevant to this project is their operable temperature range from -80° to 125° 

Celsius [14]. This is relevant for industrial environments where temperatures may reach 
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extremes. Each battery has a diameter of 34mm, and a height of 61.5mm which is quite small. 

This size allows us to place four batteries per sensor node cartridge. An image of the chosen 

batteries is shown in figure 18 below. 

 

Figure 18: Chosen Batteries [13] 

Transmitter 

The RN2903 transmitter should be swapped out with the latest version of the same product line. 

This is the RN2483 microchip, which has the same fundamental qualities while drawing nearly 

half of the power as the proof-of-concept counterpart [15, 16]. From [16] we can find the average 

power draw of the transmitter is approximately 5mW. An image of the chosen transmitter is 

shown in figure 19 below. 

 

Figure 19: Chosen Optimal Transmitter [16] 

Sensor Note Battery Life 

With the power consumption data from the ideal electrical hardware components, we can 

calculate the theoretical battery life of the node. The microcontroller has 2.25mW draw, and the 

transmitter consumes 5mW as mentioned previously. The final component is the microphone 

which consumes approximately 1mW. These component specifications are shown in table 3 

below. Given the proposed battery pack has a capacity of 273.6Wh, we can calculate the battery 
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life of the sensor node to be 3.8 years. The calculation for the battery life span is provided in 

Appendix E below. This is below the target 10 years lifespan from the specifications. Depending 

on the desired physical size of the node, additional batteries can be added to further increase the 

lifespan. 

Sensor Node Cost 

The final aspect of the wireless sensor nodes is the cost. Manufacturing plants likely require tens 

to hundreds of sensor nodes to effectively monitor their process. Thus, each node must be cost 

effective to be at all realistic. By adding the total hardware cost for each electrical component, 

we can find the total cost of each sensor node is $250CAD [6, 12, 13, 15], the specific cost 

breakdown is shown in table 3 below. The largest costs are associated with the microcontroller, 

transmitter, and batteries. The price may be increased due to the current semiconductor shortage, 

and we suspect the price will steadily drop over the coming months/years. Additionally, buying 

components in bulk would considerably reduce the prices. Savings could also lie in purchasing 

the batteries in a larger capacity directly from a wholesaler. This alone could drop the price by 

~$75CAD. That being said, $250CAD per sensor is nearly three times our initial specification of 

$100CAD, and this design does not consider the sensor housing construction. 

 

Table 3: Ideal Sensor Design Summary 
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Conclusion 

While there are many manufacturing facilities that have implemented Industry 4.0 sensor 

technologies, there are still a select group that are not as modernized that this project would 

fulfill a need for. For these production systems our sensor nodes could be implemented 

seamlessly in addition to their existing layout. Our solution would be cost effective and easy to 

integrate, making it a more appealing option for companies that do not want to invest into a more 

costly revamp of their systems. The LPWAN network can be easily established with a few 

gateways to connect all sensor nodes to the internet to be used for monitoring and/or data 

collection and analysis.  

The node proposed in this report is robust as it relies only audio data, which is readily available 

and easy to collect in almost every setting (including non-industrial applications). Since it relies 

only on audio data, there is precious little work to be done to integrate a network of our sensor 

nodes when compared with the cost and labour associated with purchasing modern components 

with their own integrated sensors. Our solution is as close to ready-out-of-the-box as one could 

ask for. 

Our sensor node is also extremely portable due to our use of machine learning. Because we have 

laid the groundwork for ML algorithm implementation onboard a sensor node, all that’s required 

to tune a node to a specific application is training data so that the node can accurately classify 

events of interest. However, the use of ML techniques extends the utility of our node beyond 

simple time-domain sequential events. For instance, a node could be used to detect faults when 

listening to an operating motor and preemptively indicate to an operator that maintenance is 

required. 

Our proof of concept developed illustrates the sensor nodes viability in a manufacturing facility. 

Over a relatively short duration of time, we developed a wireless sensor node that works in 

accordance with periodic tasks to classify specific events using audio data alone. This data is 

then used to directly tie to an existing control system where it can be used to alter the given 

process. While further development is required to finalize each specific sensor node, this proof of 

concept can serve as a launching point towards more feasible wireless sensor nodes in 

manufacturing facilities.   
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Appendices 

Appendix A 

import numpy as np 

import pyaudio 

import wave 

import matplotlib.pyplot as plt 

import struct 

from scipy.io import wavfile 

import os 

from sklearn.neural_network import MLPClassifier 

from sklearn.neighbors import KNeighborsClassifier 

from sklearn import linear_model 

from sklearn import svm 

import sklearn 

import pandas as pd 

from scipy.fftpack import fft,fftfreq 

from scipy import signal 

import math 

from scipy.signal import butter, lfilter, freqz 

import joblib 

 

def butter_highpass(cutoff, fs, order=5): 

    nyq = 0.5 * fs 

    normal_cutoff = cutoff / nyq 

    b, a = butter(order, normal_cutoff, btype='hp', analog=False) 

    return b, a 

 

def butter_highpass_filter(data, cutoff, fs, order=5): 

    b, a = butter_highpass(cutoff, fs, order=order) 

    y = lfilter(b, a, data) 

    return y 

 

def get_audio_data(rel_dir, en_filter = 1): 

    width = 1000 

    trim_value = 3750_00 

     

    # data from audio files 

    x = [] 

    # corresponding audio file class 

    y = [] 

    # unique classes seen by the algorithm, for creating new classes 

dynamically 

    classes = {}; 
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    for item in os.listdir(rel_dir): 

        # unqique identifier for file name 

        identifier = item[0:12] 

         

        # IF statements used to determine if class has been seen before 

        if identifier in classes.keys(): 

            # assign class key to the list of labels 

            y.append(classes[identifier]) 

             

        else: 

            # checks if any classes have been added yet 

            if( classes): 

                # add class file name identifier to the classes, assign index 

one higher than maximum value present 

                classes[identifier] = max(classes.values()) + 1 

            else: 

                classes[identifier] = 0 

            # append new class to list of labels 

            y.append(classes[identifier]) 

        samplerate, data = wavfile.read(f'{rel_dir}/{item}') 

        #### ALL CODE BELOW IS DEDICATED TO FEATURE ENGINEERING 

        # trim first 60k samples (shortly after clap) 

        data = data[60000:] 

        # mean center and scale data 

        data = (data - data.mean()) / data.std() 

        # filter using HPF 

        if( en_filter): 

            data = butter_highpass_filter(data, cutoff, fs, order); 

        data = np.abs(data) 

        # compresses data into bins to reduce dimentionality, works great 

after filter 

        data = data[:(data.size // width) * width].reshape(-1, 

width).mean(axis=1) 

        # If peak value < 0.36 must be ambient noise 

        if ( np.max(data) < 0.36 and en_filter): # 0.36 threshold 

            data[:] = 0 

        # looks at the data for the first non-zero value (first peak in wave) 

        first_peak = 0 

        for i in range(data.size): 

            if( data[i] >= 0.35 and first_peak == 0): 

                first_peak = i 

        #trim from first peak onwards to end (sound runs long anways) 

        data = data[first_peak:] 

        data = data[:350] 
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        if( data.shape[0] < 350): 

            print(item) 

            y.pop(-1) 

        else: 

            x.append(data) 

    return x, y 

 

x, y = get_audio_data("./training") 

 

nn = linear_model.LogisticRegression(solver = "liblinear" ) 

df = pd.DataFrame(x) 

df = df.apply(lambda row: row.fillna(row.mean()), axis=1) 

x = df.to_numpy() 

nn.fit(x,y); 

 

df = pd.DataFrame(nn.coef_) 

df.insert(0, "intercept", nn.intercept_) 

display(df) 

df.to_csv("ML_intercept_and_coefs.csv") 
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Appendix B 

LoRaWAN RN2903 Python Scripting: 

 

import rn2903 

import time 

import serial 

import sys 

import glob 

 

# list serial ports 

print(rn2903.list_serial_ports()) 

 

# open serial connection 

con1 = rn2903.open('/dev/serial/by-id/usb-

Microchip_Technology_Inc._LoRa_Tech._PICtail_Board-if00') 

 

# print connection status 

print(rn2903.status(con1)) 

 

devaddr = "c429fcbb" 

nwkskey = "52cf3cf9982813369023cf2e716ebce7" 

appskey = "f2c44bac845ad32f17ed292456d0d1e7" 

 

rn2903.raw_command(con1, "sys reset") 

time.sleep(2) 

 

# set device address 

rn2903.command_response(con1, "mac set devaddr "+str(devaddr),"ok") 

print("Device Address Set") 

time.sleep(4) 

 

# set network session key 

rn2903.raw_command(con1, "mac set nwkskey "+str(nwkskey)) 

print("Network Session Key Set") 

time.sleep(4) 

 

# set app session key 

rn2903.raw_command(con1, "mac set appskey "+str(appskey)) 

print("App Session Key Set") 

time.sleep(4) 

 

# save mac settings 

rn2903.raw_command(con1, "mac save") 

time.sleep(4) 

 

# join activation by personalization (ABP) 

rn2903.raw_command(con1, "mac join ABP") 

print("ABP Joined") 

print(rn2903.macRecBuf(con1)) 

time.sleep(4) 

sys.stdout.flush() 
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# loop forever 

while 1: 

 ** code for sending messages can be added here ** 
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Appendix C 

Python script for MQTT – OPC-UA connection: 

''' 

 Script to monitor a sensor and save MQTT messages, then upload to OPC-

UA server. 

 Author: Jonathan Lake 

 Date: 01/03/2022 

''' 

 

''' 

 CAPSTONE PROJECT PIPELINE (simple): 

 RASPBERRY PI sensor information (hex) -> TEKTELIC GATEWAY (base64) -> 

HiveMQ Broker (base 64) 

 |-> THIS script (base64 to hex conversion) -> HiveMQ (hex) and OPC-UA 

(hex) 

''' 

 

# python imports 

from socket import timeout 

import paho.mqtt.client as mqtt 

import code 

from opcua import Client 

from opcua import ua 

import time 

import json 

import sys 

import base64 

 

# function for decoding base64 encoded messages 

def decodePhyPayload(msg): 

 # extract the physical payload from the message 

 # and convert to hex 

 PHYPayload = base64.b64decode(msg).hex() 

 

 return PHYPayload 

 

 

# must be unique to other instances of this script that are running 

simulataneously 

client_name = "loraNode" 

# HiveMQ broker address 

broker = "broker.hivemq.com" 

# push topic from Tektelic gateway 

topic = "v2/pushCapstone" 

 

# create empty array for messages 

msg_list = [] 

 

# mqtt 'on connect' behavior function 

def on_connect(mqttc, obj, flags, rc): 

 if rc == 0: 

  mqttc.connected_flag = True 
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  print("connected ok") 

 else: 

  print("bad connection. returned code = ", rc) 

 

# mqtt 'on subscribe' behavior function 

def on_subscribe(mqttc, obj, mid, granted_qos): 

 mqttc.subscribed_flag = True 

 print("subscribed ok") 

 

# mqtt 'on message' behavior function 

def on_message(mqttc, obj, msg): 

 global msg_list 

 print(1) 

 msg_py = json.loads(msg.payload) 

 msg_py["topic"] = msg.topic 

 msg_py["qos"] = msg.qos 

 print(json.dumps(msg_py, sort_keys=True, indent=4, separators=(',', ': 

'))) 

 msg_list += [msg_py] 

 

 

if __name__ == '__main__': 

 

 # configure mqtt 

 mqtt.Client.connected_flag = False 

 mqtt.Client.subscribed_flag = False 

 mqttc = mqtt.Client(client_name) 

 # bind call back functions 

 mqttc.on_connect = on_connect 

 mqttc.on_subscribe = on_subscribe 

 mqttc.on_message = on_message 

 # set username and password 

 mqttc.username_pw_set('', password='') 

 

 # connect to broker 

 print("connecting to broker " + broker) 

 try: 

  mqttc.connect(broker, 1883, 60)  # connect to broker 

 except: 

  print("can't connect") 

  sys.exit(1) 

 mqttc.loop_start() 

 while not mqttc.connected_flag: 

  print("waiting for connection...") 

  time.sleep(1) 

 

 # subscribe to topic 

 print("subscribing to topic " + topic) 

 mqttc.subscribe(topic, 1) 

 while not mqttc.subscribed_flag: 

  print("waiting to subscribe...") 

  time.sleep(1) 
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 # loop forever! 

 num_msgs = 0 

 try: 

  while True: 

   time.sleep(1) 

   while msg_list != []: 

    try: 

     # get lora payload from msg 

     RawPayload = 

msg_list[0]['0004A30B001A820C'][0]['values']['nsRawPayload'] 

 

    except KeyError: 

     # handle exception 

     print("Key not found.") 

 

    # decode payload 

    DecodedPayload = decodePhyPayload(RawPayload) 

    # print decoded payload 

    print("Decoded Payload: ", DecodedPayload) 

    # publish decoded payload to HiveMQ broker 

    mqttc.publish("v1/pull", DecodedPayload, 0, 

True) 

                # remove the processed message 

    msg_list = msg_list[1:] 

 

    # set OPC-ua client address 

    client = Client("opc.tcp://192.168.0.1:4840/") 

    try: 

     # connect to client 

     print("connecting to OPC-UA client...") 

     client.connect() 

     print("connected ok") 

      

     # get node value 

     PLCstate_node = 

client.get_node('ns=3;s="OPC"."PLCstate"') 

     PLCstate = PLCstate_node.get_value() 

                     

     # set node value 

     var1_setValue = 

ua.DataValue(ua.Variant(int(DecodedPayload,16), 

PLCstate_node.get_data_type_as_variant_type())) 

     PLCstate_node.set_value(var1_setValue) 

 

     # print new value 

     print("Posted Value: ", 

int(DecodedPayload,16)) 

     

    except timeout: 

     print("connection timed out") 

 

    finally: 

     # disconnect from client 
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     try: 

      client.disconnect() 

      print("disconnected ok") 

     except AttributeError: 

      print("OPC-UA client not 

connected") 

 

 

 except KeyboardInterrupt: # Ctrl-c to quit 

  print("stopping client loop")  

  mqttc.loop_stop() 

  print("disconnecting from broker " + broker) 

  mqttc.disconnect() 

 

 

JSON packet received from MQTT broker: 

{ 

    "0004A30B001A820C": [ 

        { 

            "ts": 1649622813697, 

            "values": { 

                "bytes": "[61]", 

                "nsFCount": 249, 

                "nsFPort": 2, 

                "nsGateway": "647fdafffe00511d", 

                "nsGatewayCount": 1, 

                "nsGwId": "bff4f970-aa3d-11e8-9876-a36e3fbec477", 

                "nsRawPayload": "AQ==", 

                "nsRssi": -117, 

                "payload length": 1, 

                "port": 2 

            } 

        } 

    ], 

    "qos": 1, 

    "topic": "v2/pushCapstone" 

} 
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Appendix D 

import time 

import serial 

import sys 

import rn2903 

import pyaudio 

import wave 

import numpy as np 

from scipy.signal import butter, lfilter, freqz 

import joblib 

from sklearn import linear_model 

import pandas as pd 

 

 

def butter_highpass(cutoff, fs, order=5): 

    nyq = 0.5 * fs 

    normal_cutoff = cutoff / nyq 

    b, a = butter(order, normal_cutoff, btype='hp', analog=False) 

    return b, a 

 

def butter_highpass_filter(data, cutoff, fs, order=5): 

    b, a = butter_highpass(cutoff, fs, order=order) 

    y = lfilter(b, a, data) 

    return y 

def feature_extraction(data): 

    # Filter requirements. 

    order = 6 

    fs = 48000    # sample rate, Hz 

    cutoff = 150  # desired cutoff frequency of the filter, Hz 

    width =1000 

    trim_value = 375000 

    print("start") 

    data = np.array(data) 

    print("np array") 

    data = data[60000:] 

    print("cutoff") 

    # mean center and scale data 

    data = (data - data.mean()) / data.std() 

     

    print("mean centered") 

     

    # filter using HPF 

    data = butter_highpass_filter(data, cutoff, fs, order); 

    data = np.abs(data) 
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    print("filtered data") 

 

    # compresses data into bins to reduce dimentionality, works great after 

filter 

    data = data[:(data.size // width) * width].reshape(-1, 

width).mean(axis=1) 

    

#############################################################################

######### 

 

    if ( np.max(data) < 0.36): 

        data[:] = 0 

         

    first_peak = 0 

    for i in range(data.size): 

        if( data[i] >= 0.5 and first_peak == 0): 

            first_peak = i 

        #trim from first peak onwards to end (sound runs long anways) 

    data = data[first_peak:] 

 

        # trims from end to have normalized size, scaled by width to 

accomidate different binning 

#         data = data[:int(trim_value/width)] 

    data = data[:350] 

    if( data.shape[0] < 350): 

        x = np.zeros(350) 

    else: 

        x = np.array(data) 

    return x 

 

print(rn2903.list_serial_ports()) 

#con1 = rn2903.open('/dev/ttyACM0') 

con1 = rn2903.open('/dev/serial/by-id/usb-

Microchip_Technology_Inc._LoRa_Tech._PICtail_Board-if00') 

 

print(rn2903.status(con1)) 

 

form_1 = pyaudio.paInt32 # 16-bit resolution 

chans = 1 # 1 channel 

samp_rate = 48000 # 44.1kHz sampling rate 

CHUNK = 24000 # 2^11 samples for buffer 

dev_index = 2 # device index found by p.get_device_info_by_index(ii) 

RECORD_SECONDS = 500 

 

audio = pyaudio.PyAudio() # create pyaudio instantiation 
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flag = True 

stream = audio.open(format = form_1, rate = samp_rate, channels = chans, 

input_device_index = dev_index, input = True, output = False, 

frames_per_buffer = CHUNK) 

 

 

print("recording") 

frame1 = [] 

 

df = pd.read_csv("ML_intercept_and_coefs.csv") 

df.drop(columns=df.columns[0], axis=1, inplace=True) 

intercepts = df["intercept"].values 

df.drop(columns=df.columns[0], axis=1, inplace=True) 

coefs = df 

coefs = coefs.values 

 

channel_count = 0 

 

for i in range(0, int(samp_rate / CHUNK * RECORD_SECONDS)): 

    data = stream.read(CHUNK,exception_on_overflow = False) 

    data = np.frombuffer(data, np.int32) 

    frame1.append(data) 

    temp = [] 

     

    timeElapsed = i / 2 +.5 

    print(timeElapsed) 

     

    if( timeElapsed % 20 == 0): 

        if( i != 0): 

            toClassify = frame1 

            for i in toClassify: 

                for j in i: 

                    temp.append(j) 

            print("Frame 1 length {}".format(len(toClassify))) 

            frame1 = [] 

             

    if( len(temp) != 0): 

        data = feature_extraction(temp) 

        probs = {} 

        keys = [0, 1, 2, 3] 

 

        for key in keys: 

            summer = intercepts[key] 

            for i in range(len(coefs[key])): 
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                summer = summer + coefs[key][i] * data[i] 

            probs[key] = summer 

        print(probs) 

 

        max_key = -1 

        max_val = -9999999 

        for key,value in probs.items(): 

            if( value > max_val): 

                max_key = key 

                max_val = value 

        name_map = { 

            0: "Ambient", 

            1: "Consecutive",         

            2: "Lid On", 

            3: "Lid Off" 

            } 

        print(name_map[max_key], max_val) 

        channel_map = {0:1, 1:5, 2:7} 

        channel_selected = channel_map[channel_count % 3] 

        channel_count = channel_count + 1 

        print("Channel selected: " + str(channel_selected)) 

        print("Sent Msg Response: ", rn2903.raw_command(con1,"mac tx cnf " + 

str(channel_selected) + " " + str(max_key))) 

        time.sleep(3) 

        while(rn2903.macRecBuf(con1) != "mac_err"): 

            time.sleep(0.1) 

        sys.stdout.flush() 
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Appendix E 

The following is a calculation of the theoretical battery life of the sensor node. The total power 

draw from the sensor can be calculated by adding the power draw from each individual 

component. We can let P equal this sum. P is calculated as follows: 

𝑃 = 2.25mW + 1mW + 5mW =  8.25𝑚𝑊 

Given the battery has an energy rating of 273.6W⋅hr, we can calculate the life span as follows: 

Battery Life =
273.6𝑊ℎ

8.25𝑚𝑊
×

1day

24ℎ𝑟
×

1𝑦𝑟

365days
= 3.8𝑦𝑟 

Thus, the battery life is 3.8 years. 
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