

1

ENGR499 Group 61: Final Project Report

Distributed Sensor Network for Production

System Monitoring and Control

Group 61 Members

Jared Paull 63586572

Miguel Villarreal 41613910

Garrett Birch 74130337

Sol Thiessen 85823037

Jonathan Lake 43265818

April 15, 2021

2

Table of Contents

Project Introduction ... 5

Need and Constraint Identification ... 6

Project Need .. 6

Constraint Identification .. 6

Stakeholder Analysis ... 7

Current Solution Landscape .. 8

Discussion of Design and Implementation .. 11

Chosen Proof of Concept .. 11

Machine Learning Classifier ... 12

Filter Design .. 15

Feature Engineering .. 16

Classifier Accuracy.. 19

Real-Time Classification ... 20

Communications.. 21

LoRaWAN .. 21

MQTT... 22

OPC-UA... 23

Proof of Concept Hardware... 24

Microprocessor Choice ... 25

Microphone Choice ... 26

Transmitter-Gateway Choice .. 26

Proof of Concept Performance .. 27

Future Improvements ... 29

Machine Learning Algorithm Improvements .. 29

Real-Time Classification Improvements ... 30

Hardware Improvements ... 30

Microcontroller ... 31

Batteries ... 31

Transmitter .. 32

Sensor Note Battery Life .. 32

3

Sensor Node Cost... 33

Conclusion ... 34

Appendices ... 35

Appendix A ... 35

Appendix B ... 38

Appendix C ... 40

Appendix D ... 44

Appendix E .. 48

References .. 49

Table of Figures
FIGURE 1: FESTO WORKSTATION ... 11

FIGURE 2: RAW AUDIO DATA PLOT ... 13

FIGURE 3: RAW AUDIO DATA TRIMMED .. 14

FIGURE 4: HIGH PASS FILTER FREQUENCY RESPONSE ... 16

FIGURE 5: CENTERED AND FILTERED AUDIO SIGNAL... 16

FIGURE 6: ABSOLUTE VALUE OF PREVIOUS AUDIO SIGNAL ... 17

FIGURE 7: DOWN SAMPLED AUDIO SAMPLE .. 17

FIGURE 8: SHIFTED AUDIO SAMPLE ... 18

FIGURE 9: FEATURE EXTRACTED DATA PLOTS .. 19

FIGURE 10: CLASSIFIER CONFUSION MATRIX .. 19

FIGURE 11: REAL-TIME CLASSIFICATION WINDOWING TECHNIQUE .. 21

FIGURE 12: COMMON LORAWAN DATA RANGE, SPREADING FACTOR, BANDWIDTH, AND BITRATE

CORRELATION. .. 22

FIGURE 13: MQTT TOPIC FLOW .. 23

FIGURE 14: HMI DISPLAY CHANGING STATES .. 24

FIGURE 15: PROOF OF CONCEPT INFORMATION FLOWCHART .. 24

FIGURE 16: PROOF OF CONCEPT ELECTRICAL HARDWARE .. 27

FIGURE 17: CHOSEN OPTIMAL MICROPROCESSOR [12] .. 31

FIGURE 18: CHOSEN BATTERIES [13] ... 32

FIGURE 19: CHOSEN OPTIMAL TRANSMITTER [16] .. 32

4

Table of Tables
TABLE 1: SUMMARY OF LORAWAN CONFIGURATIONS. .. 22

TABLE : PROOF OF CONCEPT HARDWARE COMPONENTS ... 27

TABLE : IDEAL SENSOR DESIGN SUMMARY ... 33

5

Project Introduction

The world is ripe with operating manufacturing facilities that are not implementing modern

technology. Oftentimes, these existing manufacturing production systems would require

enormous cost to revamp with modern industry 4.0 specifications. As such, these plants may be

missing out on unrealized productivity that modern technology could bring. This project aimed

to design sensor nodes in a low-power-wide-area wireless network (LPWAN) which can tie into

the existing plant control systems to provide additional information. This information could then

be used for monitoring, preventive maintenance, or tie into control systems based on the

applications. LPWANs are highly efficient and send information at low data rates, which can

allow nodes to run on battery for tens of years [1]. LPWANs also have the capacity to connect

with many nodes at once over a long range [1]. Thus, LPWANs running cost are less than

traditional alternatives such as Bluetooth or Wi-Fi which have lower range and are less energy

efficient. A higher range means that a facility would likely only need one or two gateways to

send sensor information to the internet, while a longer battery life requires less maintenance

hence cost savings.

The sensor nodes should be able to sense changes in the manufacturing process, then map

those changes to real world events. Each node will be able to do all processing onboard, this

makes integration of the nodes as simple as possible. Each node will be able to share the data it

gathers through an LPWAN and make it widely accessible. Existing control systems should be

able to read the sensor node data and be able to make changes to the manufacturing process in

real time. These remote nodes can then be placed alongside the existing manufacturing process

in order to gain additional data that can improve the existing architecture. The nodes will serve

as an easy to install sensor that can provide information beyond the current systems. All while

being done without the need to overhaul the entire sensor network; the nodes can simply be

installed to the desired location and turned on. Having these sensor nodes put in well thought out

locations across the manufacturing production system may result in a more efficient running

operation, while costing very little money to install. Our project statement for the project is as

follows:

A way to implement modern sensor and data processing techniques in aging

manufacturing facilities to improve plant efficiency.

6

Need and Constraint Identification

Project Need

Manufacturing production systems strive to be as efficient as possible, but plants built before

the rise of Internet-of-Things (IoT) do not have the equipment to implement modern data

processing techniques. The barrier to entry to IoT implementation is the enormous cost

associated with overhauling the entire production sensor network. Instead, by inserting sensor

nodes in key areas of the production system, some benefits of IoT can be gained for a fraction of

the cost. These sensor nodes can do additional monitoring, or for data collection to be further

analyzed to optimize the system. The nodes being designed are not intended to be a substitute to

existing sensors, these existing sensors are typically more specialized. In contrast, the sensor

nodes being designed should be very flexible, the sensing and processing techniques should be

applicable to a large array of objects. This makes the sensor nodes very viable in existing

facilities since the nodes are equipped for a wide range of sensing applications. An analysis of

the current solution landscape also shows a lack of full integration from sensor to network to a

control system, especially when considering low power technology.

Constraint Identification

The scope of our project will be constrained by predetermined factors such as resources,

budget, knowledge, and time. The timeline of the project is set by Dr. Kenneth Chau who has set

a final due date of April 15, 2022. Throughout this time frame our group is expected to complete

several checkpoint deadlines such as the submission of this project definition report due on

November 12th, a conceptual design presentation held throughout the weeks of November 15th

to December 6th, an oral poster presentation held on April 11th, 2022, and the final report due on

April 15th, 2022, to end the project. Further adding to our time constraints, our group's hands-on

time with the smaller scale production equipment we will use to experiment our sensors on, will

be limited by the availability of the lab, EME 2220, and our group's access to it. As well, the

time our group members can dedicate to this project can also be considered.

While the group possesses some initial knowledge about components involved in the project,

individually our group members will still have to research certain topics in order to fill in

7

potential gaps which may arise as we progress into the complexities of our solution. Therefore,

our previous technical knowledge can also be considered a constraint affecting our scope. The

initial resources provided by our faculty advisor Dr. Dean Richert included: a microcontroller, a

transmitter, an auditory microphone and a gateway used to establish connection. Outside of these

components, any extra resources needed to be purchased using the $300 budget provided by the

School of Engineering.

A further constraint of our project is to keep in mind the low power aspect goal of our design

and as such, our group is tasked with designing the optimal solution that maintains this

requirement. While there exists many alternatives that would provide faster processing and

communication speeds that draw higher power, our unique solution will strive to extend battery

life and meet these other requirements as it can.

While we were luckily provided with most of the equipment necessary to complete our proof

of concept, some were outdated or less efficient which prevented us from optimizing our

solution. However, we were able to predict performance of a sensor node based on optimal

components, shown in the Future Improvements section of this report.

In correspondence to the ongoing COVID-19 pandemic all provincial, local, and university

restrictions and policies will also have to be observed and upheld. Unless necessary to meet

virtually, in person meetings will be conducted with appropriate social distancing measures,

masks, sanitation supplies, and other advised materials.

Stakeholder Analysis

A project of this scale involves many parties that are either working on the progress, or

expecting the results. Among the stakeholders working on the outcome is Capstone Group 61,

and Dr. Dean Richert, an assistant professor at the University of British Okanagan. Dr. Richert is

the faculty advisor for the project who put forward the project idea and serves to guide our group

regularly in weekly meetings, as well as provided us with initial resources to start the project.

The members of group 61 chose to undertake this project and have to actively complete

deadlines for evaluations for the capstone course ENGR 499 and as well are working to complete

this project and to compete at the end of the academic year against other capstone groups to win

8

the respective category. Dr. Dean Richert and the members of group 61 share in any potential IP

that is generated as a result of this project, thus they have a unique investment in this project

compared to other stakeholders.

The other stakeholders in this project are Dr. Kenneth Chau and the School of Engineering

who expect to receive the project deliverables and act as our bosses for the project. Dr. Chau is

the course instructor for capstone and has set our deadlines and ultimately grades our work with

our faculty advisor for our course mark. The School of Engineering is funding the project budget

of $300 and also providing the course as a requirement for the Bachelor of Applied Science

degree our group looks to complete from the University.

As well, future stakeholders could be considered in our project as our solution could be

implemented by groups currently unknown to us. Not only will our solution be of interest but the

steps of our process as well in order for them to understand how we got to each point and for any

adaptability or troubleshooting they need to do. While our solution will be specifically made for

acoustic sensors in theory the sensor network we implement will be able to work with different

kinds of sensors making its range of problem adaptability wide for many applications.

Beyond this, the manufacturing industry as a whole serves to gain from any potential

findings in this project. Breakthrough designs, or unique insights to low power sensor networks

can act to further the industry as whole. Thus, while the industry has no influence on this project;

it should be considered how this project fits into the bigger picture, and what would be

considered a success considering past projects.

Lastly, end users such as manufacturing plant operators can positively benefit from this

project. An acoustic sensor network could work to reduce operating costs, and improve overall

plant efficiency. Thus, facilities that implement the sensor network designed in this project could

be positively affected.

Current Solution Landscape

Predictive Maintenance (PdM) techniques are a method implemented with sensing

technology that proactively monitors systems to detect failure early and initiate a fix. A similar

concept, Preventative Maintenance, still has the same goals of early failure detection but is based

9

on scheduling of a routine check instead of constant monitoring and as such can still lead to

failure in between checks. A study done by the company SKF that tested 30 identical bearings

and found that the time to failure varied widely between 15 to 300 hours which made it difficult

to foresee failure time and set a maintenance interval [2]. In this case implementing PdM would

prevent under and over maintenance as well as increase worker safety, and reduce material waste

[2].

The idea of implementing additional sensors to monitor a system is not unique to this

project. The key element to this project is the low power element, and the ability for the nodes to

tie into existing control systems. It is easy to find sensor nodes that require an electrical power

supply, but very few solutions exist that are battery powered let alone have the infrastructure

behind them to link to common control systems like a PLC. Being said, there are projects that

have implemented technology similar to this project. For instance, in 2018 the City of Calgary

implemented a LPWAN acoustic sensor node network throughout their city to measure the noise

level and report any potential public disturbances [3]. These nodes would measure the average

noise level at the node, then if the decibel level was over a specific threshold it would send an

alert that could be further investigated in person [3]. The sentiment of the project was to reduce

costs associated with noise complaints by proactively pursuing them as they occur. The hardware

used in this project is very similar to what is required for this project, however the software side

will vary greatly. The City of Calgary project is closely related with monitoring the noise level

and identifying particular sounds, while our project is using past sensor data to investigate

changes in the environment. These changes in pressure waves could be an object sliding off of a

conveyor belt, or a motor grinding due to a lack of lubrication. This highlights the difference in

software between the projects, where our machine learning algorithm needs to be tuned to detect

these changes for a specific application. The other differentiating factor is that the City of

Calgary simply required a sensor network to passively monitor sound levels, then a person must

act on the warnings sent by the nodes. Whereas our project will be able to connect with existing

control systems through a common medium. This means that our sensor nodes do not need to be

specifically monitored in a dedicated location. They can instead be implemented into existing

human machine interfaces (HMIs), or the sensor data can be acted on by a programmable logic

controller (PLC), instead of requiring human intervention.

10

Other projects, such as that in [4] implement a microphone in order to monitor the sound

emitting from a fan. The continuous stream of data is then analyzed to determine if the fan

should be relubricated. The system implemented is very bulky, expensive, and would require the

entire motor housing to be revamped in order to be implemented since the system is wired to an

electrical source. This project is designed to be a substitute for these projects, while being

cheaper, and much easier to implement. The important distinguishing factor between a wired

connection and battery powered is the transmission frequency. Sending data at a millisecond rate

would quickly consume power, and make a small battery operated node unfeasible. Thus, this

project is designed for employment in situations where extremely quick response time is not

vital.

Finally, there are projects such as that in [5] that implement a wireless sensor network

(WSN) into industrial environments. The project in [5] uses a WSN to track the axle temperature

for a freight train to ensure the heat generation does not exceed design limitations. The project

uses low power sensors spread out beneath the train to monitor the temperature using a

temperature sensor [5]. The solution was found to be accurate, while maintaining a low cost [5].

This WSN implementation is a great model for what this project aims to accomplish. The

defining difference is again the use of the output signal from the sensor network. The project in

[5] did not incorporate the signal into control of the train, instead it just warned the conductor.

This is a common theme of existing WSNs, they collect data, but the data must be interpreted by

a human to be acted on. Implementation into a control system reduces human intervention, which

improves overall efficiency, and decreases likelihood of errors occurring.

11

Discussion of Design and Implementation

Chosen Proof of Concept

To demonstrate the viability of the wireless sensor node, we opted to develop a proof of concept

that demonstrates the projects’ purpose. The proof of concept will work to classify on a small

FESTO work machine that detects whether a workpiece has a lid on it. The workstation is shown

in figure 1 below.

Figure 1: FESTO Workstation

The operation of the workstation is as follows. A workpiece is set on the left side of the conveyor

belt, marked starting point on figure 1. Once detected by an initial sensor, the workstation arm

will pick up the workpiece, rotate and place the piece on the measuring station. The measuring

station detects if the workpiece has a lid or not depending on the measured distance from sensor

to piece. The workstation arm will then pick the piece back up and place it back on the conveyor

belt. The conveyor will carry the piece right, then if there is no lid a controllable lever will

extend and push the workpiece down a ramp. Otherwise, if the piece has a lid the lever will not

move, and the piece will move to the end of the workstation. The purpose of this automated task

is to divert pieces that do not have a lid, presumably indicating a workpiece that missed a step in

the line of production. The workstation is controlled by a Siemens PLC which is what the node

will relay all information to for controls.

12

Using this simple workstation, we can come up with four interesting cases that a sensor node

could listen for. The most obvious three are for a workpiece with no lid, a workpiece with a lid,

and nothing on the conveyor belt. The final case we decided to classify for is the case of a

jammed workstation arm. Through testing we found that two consecutive workpieces placed one

after another tended to jam the workstation arm in the down position, effectively stopping the

entire process. The jam requires human intervention to remove the workpiece or to manually

retract the workstation arm.

To differentiate between these cases, we opted to use onboard machine learning for each sensor

node. This means each sensor will read in audio data, classify it, then transmit the data back to

the PLC. Machine learning may not be needed for such a simple classification scheme, but the

ultimate purpose of a sensor node is to be implemented in environments that are potentially

complex. In these environments, machine learning is essentially required to produce effective

classifications. Additionally, using machine learning allows the sensor nodes to be easily

implemented if produced. That is, all that would be needed to introduce a sensor node to a

manufacturing facility would be to collect sufficient training data, then simply train the classifier

with the data. This makes the sensor network extremely portable since the groundwork for the

machine learning network is already in place and therefore implementation should be seamless.

With this general proof of concept knowledge in mind, we can continue to discuss the solution

that we developed.

Machine Learning Classifier

Seeing as this project relies on robustness and accuracy of classification, it is key that a strong

machine learning (ML) classifier is developed to meet the demands of a manufacturing plant.

Should the classifier be too inaccurate, it would entirely defeat the purpose of the sensor. This is

because the sensor is meant to be complimentary and hassle free, providing an easy to implement

alternative to traditional wired or integrated sensors. False classifications that result in process

delay are costly and thus the classifier should be over 99% accurate according to the initial

prototype specifications. This number should be much higher in an actual manufacturing facility

where 1 time in 100 is far too often for an error to occur. With this accuracy specification in

mind, we can proceed and discuss the ML design process.

13

Before recording, the microphone is set to record at its designed operating frequency of 48kHz.

A higher sampling rate is desirable as it allows us to detect higher order frequencies in the

sample data. These higher order frequencies may be of interest depending on the events

examined later. Being we are using a microelectromechanical microphone, the power draw is

very low for a digital microphone. This means the tradeoff between high frequency operation

and power draw is worth making due to the small relative size.

Before any classifier is developed, the sensor data must be translated to meaningful features

which can be used for classification. To effectively communicate the design process, images of

the feature data is shown as it is transformed to the final meaningful data. A sample audio signal

for the initial raw data is shown in figure 2 below. This clip shows an 8-second audio sample of a

workpiece traveling through the workstation without a lid.

Figure 2: Raw Audio Data Plot

There are a few initial issues with the raw data. First, there is a very large high frequency spike

when the microphone begins to record. This was explained upon referencing the microphones

datasheet and noticing that the microphone is not designed to detect frequencies below 50Hz [6].

Being that this issue only occurs during the initial recording of the microphone we decided it was

best to ignore the first 60,000 (~1.2 seconds) that the microphone records. Doing so we get the

audio plot shown in figure 3.

14

Figure 3: Raw Audio Data Trimmed

The first point of interest regarding the audio data in figure 3 above is that an event can occur

anywhere within a sample window. This means that the raw sensor data cannot be used for

classification since the meaningful data can be anywhere within the recorded audio window and

a model would tune a classifier parameter inconsistently. This leads us down two possible design

paths, either to use advanced ML algorithms, or to perform extensive feature engineering to

extract meaningful data from the audio sample.

Advanced ML algorithms such as the long short-term memory (LSTM) algorithm can interpret

sequences of data, as opposed to single data points [7]. This allows it to interpret time-based

datasets, effectively eliminating the problem relating to identifying where an event occurs within

a dataset. This initially sounds great, but there are significant issues associated with this

technique. Firstly, algorithms such as LSTM are extremely technical and require advanced

libraries to implement. A few students within our group are proficient in ML, but not masters.

This makes implementing advanced classifiers hard due to the lack of background knowledge in

the field of deep learning. As a group, we feared that delving into an advanced topic within a

field in which we have no background would lead to a solution we were incapable of

understanding fully. Additionally, advanced Python libraries are great for Raspberry PI

implementation but add additional computational requirements to the sensor nodes. As well,

standalone processors often run C/C++ which has a less broad library network for potential ML

implementation.

15

With the pro/cons of advanced ML algorithms in mind, we opted to implement a more traditional

classifier that reps less computational costs and a more transparent implementation. To do this,

an effective feature engineering algorithm must be developed to compensate for the variations in

the time domain start point. With this feature engineered vector, we can train a logistic

regression classifier. A logistic regression model can be trained on a plant computer using

training data, validated using testing data, then the entire model can be ported to the

microprocessor simply by importing the model’s coefficients using a thumb drive or even

through the internet using something like FTP. The logistic regression has the advantage of being

a simple combination of multiplications and additions which makes it easy to implement without

additional bulky libraries or undue computations. Importantly, the decision to implement a

logistic regression means potentially thousands of multiplications must occur for each

classification depending on the microphone sample rate and length of classification window.

Thus, it is vital that the chosen microprocessor/processor has an onboard floating-point unit

(FPU) block on board. FPUs are dedicated chips for addition/multiplication with floating point

numbers (non-integers) which drastically decrease the time taken to compute the class for a data

sample.

Notice that from figure 3, there is significant ambient noise overlayed on top of the meaningful

peaks within the sample. These noise-generated peaks introduce a problem when determining

where an event starts within a data set, as they may falsely indicate the start of an event. Thus,

the next logical step is to implement a filter to reduce the noise. Examining a data sample

involving only the background lab noise we found that the background noise is concentrated

below 130Hz. Thus, a high-pass filter (HPF) is tested and implemented to reduce the undue

lower order harmonics.

Filter Design

By experimentation, we found that a Butterworth filter with an order of 6 and a cutoff of 150Hz

resulted in the best filter design. While an order of 6 means a relatively dull cutoff, it is an

optimal balance between computational constraints and filter effectiveness. The frequency

response of the designed HPF is shown in figure 4 below.

16

Figure 4: High Pass Filter Frequency Response

By convolving the filter designed with the audio signal we can get a filtered audio signal. This

signal has clear peak values and being that each peak correlates to an audible event we can

classify the data easier. Before filtering is done, the raw data is mean centered then normalized

by the standard deviation. This technique allows for the audio data to look similar when the

sensor position is changed nominally. For implementation in a real sensor node, the mean

centering and normalization can be overlooked. The centered, filtered audio signal is shown in

figure 5 below.

Figure 5: Centered and Filtered Audio Signal

Feature Engineering

Upon examining figure 5 above, it is clear that there exist both positive and negative signal

values throughout. To reduce variability within the data, we opted to take the absolute value of

the signal shown in figure 5, this results in the figure shown in figure 6 below.

17

Figure 6: Absolute Value of Previous Audio Signal

Notice in figure 6, there are over 400,000 samples which means there would be over a million

multiplications required in order to classify the sample. To rectify this issue it was found that

down sampling the data resulted in a smaller sample size which resulted in faster classification

speed. Down sampling is done by grouping together 1000 samples then taking the average

between them and reducing the 1000 samples to a single new sample that is the average value

between them. This scales down the dimensionality 1000 fold, hence saving precious time and

energy requirements. The down sampled audio sample is shown in figure 7 below.

Figure 7: Down Sampled Audio Sample

Now, the feature engineering is nearly complete; the final aspect is to align the window of data

with the start of the event. After experimenting with an appropriate threshold size, we found that

a spike with magnitude greater than 0.35 indicates true start of an audio event. If there is no peak

18

above 0.35, we can reduce the data sample to zero and deduce that it is simply ambient noise.

Additionally, all events for the proof of concept only take 8 seconds which correlate to

approximately 350 down sampled samples. Thus, we can align the event within the classification

window by aligning the start of the window with the first occurrence of a peak greater than 0.35,

then including the following 350 samples following. The resulting shifted audio simple is shown

in figure 8 below.

Figure 8: Shifted Audio Sample

The audio sample in figure 8 has properly windowed around the event and made clear the

prevalent peaks in the data. The technique mentioned is robust and allows for the event to occur

anywhere within an audio sample. The number of samples is also reasonable, meaning there are

only about a few thousand computations to be completed per classification.

The final step in designing a classification algorithm is to simply train a logistic regression

classifier. This was done using a Python library called SkLearn. SkLearn saved time manually

training a classifier, and instead we simply saved the coefficients for the model to a CSV file

which can be transferred to the microprocessor. To show the power of the feature engineering

algorithm mentioned, we can plot each case for the proof of concept and overlay each sample

within each case. For the proof of concept, we had four cases being lid on, lid off, jammed pieces

(called consecutive pieces), and ambient noise. The training data has 10 samples per case; thus

we have 40 audio samples which are plotted after having their features extracted. This plot is

shown in figure 9 below. The Python script to do the feature engineering and train the classifier

is shown in Appendix A.

19

Figure 9: Feature Extracted Data Plots

Classifier Accuracy

By examining figure 9 above it is clear that the feature engineering aligned the data samples

excellently. The dark lines indicate that like samples are in sync within the window, this is key to

a well-behaved classifier. With the classifier trained using the data shown in figure 9, we tested

the data against a similar set of testing data. The testing data was collected during the same

session as the training data, thus a well performing ML classifier should classify the testing data

well. By classifying each data sample, then comparing with the audio samples true test case we

can gather an accuracy for the classifier. Doing so we found that the classifier we trained is 98%

accurate. The data gathered is shown in a confusion matrix in figure 10 below.

Figure 10: Classifier Confusion Matrix

Although our aim was to develop a classifier with 99% accuracy, we opted to settle with a 98%

accuracy classifier. This is not a large compromise and is reasonable for the purpose for this

20

proof of concept, where the ML algorithm a single piece of the larger puzzle that is the

construction of the entire sensor node.

Real-Time Classification

Classification of the audio sample is done on board the sensor node. Thus, the logistic regression

model coefficients must be stored locally on the microprocessor which can be used for

classification. This means the coefficients must be ported from the computer where training

occurred to the target sensor. This was done using a USB drive to transfer a CSV file between

the devices. With the model accessible from the sensor node, we can move forward with the real-

time classification technique.

For the sensor nodes to be feasible in a manufacturing facility, they must be flexible in terms of

classification periods. Meaning that two events should be able to occur in sequence with little

time difference in between events. This introduces a unique challenge where events can occur

anywhere within time, but the events can only be correctly identified after the sensor data has

been processed. There are two issues that result by using a singular windowing technique. First,

events that span two windows lose information and their classification will be missed. Secondly,

two events occurring in a single window will fail as the current feature engineering solution will

only detect the first event occurrence.

These issues seem to render the idea of a singular windowing method useless but examining how

manufacturing plants typically operate can give insight to these problems. Manufacturing

facilities are finely tuned systems, and there is often little randomness involved within the system

timing. Thus, we can assume that events are periodic and predictable by nature. This allows us to

construct a single window that is timed such that the event of interest is guaranteed to fall within

the window. Consider the following scenario to illustrate the idea; a plant has unstable objects

coming down a conveyor belt where they stop and are measured. Suppose we want to implement

a sensor to listen to detect if the object tips over. If an object of interest enters the specific area

every 20 seconds the sensor can listen for 15 seconds, classify the data, and send the information

then begin to listen 5 seconds later. Being that the event is predictable and periodic, the sensor is

tuned to always be alert when a workpiece enters, then classify during downtime between

21

potential events. Figure 11 below illustrates the process timeline in terms of both the event and

how the system listens and performs computations.

Figure 11: Real-Time Classification Windowing Technique

We can now apply the windowing technique to the specific proof of concept for this project.

Considering each workpiece takes approximately 8 seconds to process through the system we

assumed that the pieces arrive 25 seconds apart. We then opted to use a 20 second window,

which leaves for 5 seconds of processing and sending the resulting data.

With a 20 second window, the ML classifier was able to run from start to finish in under one

second. The method was validated through testing where the classifier operated as intended, both

classifying correctly and working regardless of event location within the time sample. The

communication strategy is the focus of the next section of the report, but we were able to achieve

under 1 second transmission speed from sensor node to PLC. This means the total computation

plus transmission time is under 2 seconds which places the node well within its allotted 5

seconds time frame for computation and communication.

Communications

This section relates to the communication used to transmit data from the wireless sensor node to

the PLC. This includes a few key components which are discussed below.

LoRaWAN

The main communication method in this project is the use of Long-Range Wide Area Network

(LoRaWAN) technology for transmitting sensor state values to the gateway. Our transmitter was

setup for communication using the North American specification. This transmitter sends

22

hexadecimal byte data across a LoRaWAN network, the bytes are then received at an IoT

gateway. LoRaWAN allows for network versatility as many device parameters can be adjusted to

fit the application. This transmitter uses Activation by Personalization (ABP) and operates under

the North American frequency band of 902-928 MHz [1]. Example python code for joining the

ABP network is shown in Appendix B. Figure 12 demonstrates the correlation between data rate

(DR), spreading factor (SF), bandwidth (BW), bitrate (BR), and range configurations for the lora

module. Our transmitter was configured with high a DR of 4, and SF8 as our proof-of-concept

was not configured for long-range connectivity. These settings allowed the maximization of BR

without compromising any range capabilities. This is important as real-time applications rely on

speed to meet critical deadlines. Table 1 below summarizes these settings.

Figure 12: Common LoRaWAN data range, spreading factor, bandwidth, and bitrate correlation.

Activation ABP

Data Rate (DR) 4

Spreading Factor (SF) 8

Bandwidth (BW) (kHz) 500

Bitrate (BR) (bps) 12500

Tx Frequency (MHz) 902-928
Table 1: Summary of LoRaWAN configurations.

Once the state of operation is determined by the machine learning algorithm, the data is

transmitted by the LoRa device to the receiving network gateway using a hexadecimal key. This

value is sent to the gateway with a payload that is base64 encrypted along with information about

the device such as its identification number.

MQTT

Once messages are received by the Tektelic gateway, the data is stored on a Tektelic backend

server which can be accessed via a web browser using login credentials. Using the backend

23

server, we were able to configure and push Message Queueing Telemetry Transport (MQTT)

messages to an MQTT broker. MQTT is an industry standard messaging protocol which uses a

publish and subscribe architecture to send messages between remote devices while minimizing

bandwidth [8]. We chose to use the HiveMQ broker hosted at ‘broker.hiveMQ.com’ where we

configured a topic ‘v2/pushCapstone’ that all the base64 encoded transmitter messages would be

pushed to. Figure 13 displays the flow between the MQTT client and broker with the respective

subscription topic. From there, a local python script subscribes to the topic and pulls the

messages, as shown in Appendix C, where they are decoded and pushed to the OPC-UA server.

Figure 13: MQTT Topic Flow

OPC-UA

Open Platform Communication Unified Architecture (OPC-UA) is a widely used communication

protocol between machines in industrial automation. A server was established on the stations

PLC to provide the source of information, in our case, variables in a data block to update the

station state. Using a local computer as a client to connect to the server through URL our group

established a connection to read and write onto the PLC data. Through this connection our group

was able to update in real time the station state variable from MQTT Client to PLC. With the

state now updated our PLC was able to display the changes on the HMI to accurately display the

monitored event. Figure 14 below shows a screenshot of the HMI in default state, and once it

receives from the microprocessor that ambient noise is detected.

24

Figure 14: HMI Display Changing States

The flow of information within the proof of concept is shown in figure 15 below; it captures the

entire lifecycle from audio emitting event to PLC input.

Figure 15: Proof of Concept Information Flowchart

Proof of Concept Hardware

One of the most important aspects of this project is the hardware chosen for the sensor nodes.

Each node is designed to run for 10 years according to the project specifications; thus, the

25

hardware should be very low power devices accompanied by large batteries. Regardless of the

hardware chosen there are three crucial aspects of the sensor node, these being the

microprocessor/processor, microphone, and transmitter-gateway pair. The microphone will read

in audio data, then the microprocessor will analyze the data where it will be sent to a transmitter

which relays the data to a gateway. The gateway uploads the data to the internet, finally the PLC

can pull the data and act accordingly.

For this project, we opted to demonstrate a proof of concept of this process. Given the time and

monetary constraints of the project we decided to focus on the functionality of a sensor node.

This included getting a prototype working, but not abiding by all the specifications already

determined in the initial project definition report. As a result, completion of this proof of concept

will demonstrate the feasibility of the idea; but the model will not be directly implementable in a

manufacturing facility.

With this in mind, we decided to choose hardware for the project that is popular and easy to use.

This prevents time spend debugging issues that may have little to no online support.

Additionally, we opted to use hardware provided to us by our project supervisor and faculty

advisor Dr. Dean Richert. Given Dr. Richert’s background in wireless sensor nodes, it is logical

to use equipment he is familiar with as it allows us to have additional avenues for support

through him.

Microprocessor Choice

We opted to use a Raspberry PI 3B+ as a microprocessor. PIs are essentially small configurable

desktop computers, they have an onboard processor, RAM, wireless Wi-Fi, four USB 2.0 ports,

an HDMI port, and a GPIO header [9]. The PI also has an onboard floating-point unit which

makes it optimal for doing consecutive numeric calculations. Raspberry PIs are very popular and

user friendly which cuts down on development time. The drawback with the PI is that it draws

12.5W power at maximum load. This is many orders of magnitude off of what a low power

device consume, thus it cannot be implemented in a long-lasting sensor node. Being said,

anything implemented on the PI can be done on a less-user-friendly processor that has more

desirable power draw. Thus, the PI is the perfect choice for the proof of concept.

26

Microphone Choice

The onboard microphone decision has a few different angles. First, the microphone should have

a high sampling frequency. According to Nyquist’s sampling theorem, in order to detect a given

frequency we must sample at twice the given frequency [10]. Accordingly, a high frequency

microphone will be able to pick up detect additional frequencies which may be crucial depending

on the events frequency domain characteristics. The next, and most important microphone

property is the devices power consumption. Power draw is critical for sensor nodes battery lives

as mentioned earlier. The final, and least important aspect of the chosen microphone is its output

data format; being either analog or digital. All microphones are analog by nature but ensuring

the microphones output data format aligns with the microprocessor capabilities is required for

them to communicate.

With all these aspects in mind we opted to choose the Adafruit I2S MEMs microphone. The I2S

is a low power, digital output microphone, that is designed to operate at 48kHz. These properties

designate it as a great choice for both the proof of concept, and for the final sensor node

construction.

Transmitter-Gateway Choice

The last consequential hardware to select is the onboard transmitter, and the gateway it connects

to. These pieces of hardware should provide reliable communication, data encryption, and be

able to transmit the required 2-bits representing the classified event every ~20 seconds to be

consistent with the designed classification technique. Lastly, the pair should communicate using

LoRaWAN and consume a low amount of power. These requirements are specifically for the

transmitter, the gateway only must be reliable and capable of communicating with the

transmitter. We opted to choose the RN2903 LORA(R) MOTE transceiver module as it fulfills

all requirements demanded of the transmitter. The only pitfall of this transceiver module is that it

is a few years old and draws more power than newer versions. The corresponding gateway used

is the Tektelic Kona Pico which is now obsolete to its successor which has upgraded features

such as a four hour backup battery and an integrated 3G/4G cellular modem [13].

All the components used for the proof of concept, as well as their power draws are shown in

table 2 below.

27

Table 2: Proof of Concept Hardware Components

Proof of Concept Performance

The final proof of concept electrical hardware setup is shown in figure 16 below. Note that the

processor-transmitter-microphone bundle are the components of the sensor node, the gateway is

physically separate from the node.

Figure 16: Proof of Concept Electrical Hardware

The resulting sensor node proved to be extremely effective. We measured the sensor to be over

95% accurate under ideal lab conditions. However, any “unknown” lab sounds, such as people

talking triggers the ML algorithm incorrectly and the results become unreliable. Furthermore,

any small changes in the actual workstation result in completely unreliable results. For instance,

should the workpiece be placed awkwardly on the belt and take an extra few tenths of a second

to slide down the conveyor belt, the resulting classification is unreliable. The final Python script

used in the proof of concept is shown in Appendix D.

The largest issue associated with the proof of concept is the communication between the onboard

transmitter and the gateway. The issue was Over the Air Activation (OTAA) not properly

28

connecting therefore we were required to implement Activation By Personalization (ABP). ABP

uses a fixed device address, fixed security, and fixed network parameters which require manual

configuration and may cause uplinks and downlinks to not function properly [17]. This resulted

in the transmission speed between sensor node and gateway to take upwards of 3 seconds.

Though we could not fix this issue, we suspect the error is a result of the proof of concept using

relatively old hardware and a new transmitter would rectify the issue. Another potential source of

error is the distance between transmitter and gateway. LoRaWAN is meant for long range

transmission, but in this proof of concept the pair were less than five meters away from one

another. Increasing the distance between transmitter and gateway would place then within

optimal communication distance and allow for my effective transmission. Ultimately, this error

is minor and can be rectified easily through additional testing which requires additional time we

do not have.

The proof of concept developed demonstrates the concept of the project and does so effectively.

It acts to show the viability of sensor nodes in manufacturing plants. The next section is

dedicated to discussing future improvements to the sensor node to make it widely

implementable.

29

Future Improvements

While there are many manufacturing facilities that have implemented Industry 4.0 sensor

technologies, there is still a sizeable group that is not as modernized that would benefit from

implementing something like a network of the sensor nodes proposed in this document. For these

production systems our sensor nodes could be implemented seamlessly in addition to their

existing layout. Our solution would be cost effective and easy to integrate, making it a more

appealing option for companies that do not want to invest into a more costly revamp of their

systems. The LPWAN network can be easily established with a few gateways to connect all

sensor nodes to the network.

Machine Learning Algorithm Improvements

Having discussed the detailed algorithm in the previous section leads us naturally to the potential

improvements. Potential improvements in the machine learning section are merely observational

and further testing is required to validate any speculations.

The first method to increase the performance of the ML implemented would be to examine the

classifier used. The logistic regression model implemented is simple and not robust, meaning any

small changes to the time domain signal results in inaccurate classifications. Adding more

complex deep learning algorithms has the potential to increase reliability of the classifier and

thus make it more likely to be implemented in industry. Potential classifiers to examine next

include the LSTM mentioned prior, or premade libraries such as tensor flow. As mentioned

prior, these libraries and advanced learning methods may come with the caveat of increasing

processing requirements which may push computation times beyond the desired time frame.

Should a more sophisticated classifier be implemented, it would be of interest to look at scaling

back the feature engineering done. Feature engineering was required to make up for the fact we

implemented a rather dull classifier, thus a more advanced model may need less help in order to

pull out the desired features from the audio data. Performing less feature engineering may free up

additional time for the classifier to work, thus a tradeoff may be possible between a more

advanced training model and less pre-classification computation.

30

Real-Time Classification Improvements

The initial classification technique assumes that there is time for computation between events

occurring. But what if the events are back-to-back, and there is not time for the node to perform

computation between events occurring? This introduces the need for parallelization of events.

The most effective improvement to the classification method is to introduce multithreading.

Multithreading allows specific cores on the processor to handle specific tasks, and thus eliminate

the series occurrence of recording, then classifying. With multithreading, a singular core could

read in sensor data then pass the data off to a separate core for classification and transmission.

Provided the separate thread could perform its action quicker than the window length, the

microprocessor will work as intended. Multithreading is the easiest technique to guarantee

correct timing for periodic events.

Should the events not be periodic, more sophisticated windowing techniques are needed. This

could include multiple overlapping windows that are able to capture the event, or even

implementing algorithms that do not begin recording until a specific threshold or occurrence.

Note that these windowing techniques likely also require multithreading to operate effectively.

Hardware Improvements

The proof of concept developed is complete and functional, but it is not fit for implementation in

a wireless sensor node. This stems from a few issues. The first is the electronic hardware used in

the prototype. The “microcontroller” used in the prototype is extremely power demanding and

must be addressed for feasible implementation. Additionally, for a wireless sensor node we must

choose corresponding batteries that can power the desired microcontroller. The next

improvement lies in the transmitter used; the proof of concept uses an old and power heavy

transmitter that can be refreshed to improve sensor node lifespan. We can then use these

components to calculate the power draw of the entire sensor node to estimate the shelf life of the

node.

31

Microcontroller

For industry application, it would be desirable to use the lowest-powered microcontroller

available instead of the Raspberry Pi used in our implementation. After some research, it appears

that the microcontroller with the best ULP (ultra-low-power) bench score is the ON

semiconductors RSL 10 chip [11]. It has a bench score of 1090, which is derived from the

inverse of the average power consumption in μW over 50 iterations, multiplied by 1000 [11].

This means that the processor consumed about 1μW while operating during the test. By our

estimation, according to the datasheet for the processor, it would consume approximately 2.25

mW on average when in use [12]. The chosen microprocessor is skewed towards power use and

does not have optimal performance specifications. For instance, the RSL10 does not have an

onboard FPU which may be problematic. Accordingly, while our best estimations are that the

processor is adequate, additional testing is required. An image of the chosen microcontroller is

shown in figure 17 below.

Figure 17: Chosen Optimal Microprocessor [12]

Batteries

Our selected battery, the EEMB ER34615 will be deployed in packages of 4. With each having

an energy capacity of 19,000mAh or 68.4Wh, each node would have a total of 273.6Wh at its

disposal [13]. The battery was selected as it is a lithium thionyl chloride battery which boasts

low self-discharging at about 1-2% per year [14]. Additionally, these batteries offer high energy

densities which allows to pack more energy in a smaller form factor [14]. The final advantage of

these batteries relevant to this project is their operable temperature range from -80° to 125°

Celsius [14]. This is relevant for industrial environments where temperatures may reach

32

extremes. Each battery has a diameter of 34mm, and a height of 61.5mm which is quite small.

This size allows us to place four batteries per sensor node cartridge. An image of the chosen

batteries is shown in figure 18 below.

Figure 18: Chosen Batteries [13]

Transmitter

The RN2903 transmitter should be swapped out with the latest version of the same product line.

This is the RN2483 microchip, which has the same fundamental qualities while drawing nearly

half of the power as the proof-of-concept counterpart [15, 16]. From [16] we can find the average

power draw of the transmitter is approximately 5mW. An image of the chosen transmitter is

shown in figure 19 below.

Figure 19: Chosen Optimal Transmitter [16]

Sensor Note Battery Life

With the power consumption data from the ideal electrical hardware components, we can

calculate the theoretical battery life of the node. The microcontroller has 2.25mW draw, and the

transmitter consumes 5mW as mentioned previously. The final component is the microphone

which consumes approximately 1mW. These component specifications are shown in table 3

below. Given the proposed battery pack has a capacity of 273.6Wh, we can calculate the battery

33

life of the sensor node to be 3.8 years. The calculation for the battery life span is provided in

Appendix E below. This is below the target 10 years lifespan from the specifications. Depending

on the desired physical size of the node, additional batteries can be added to further increase the

lifespan.

Sensor Node Cost

The final aspect of the wireless sensor nodes is the cost. Manufacturing plants likely require tens

to hundreds of sensor nodes to effectively monitor their process. Thus, each node must be cost

effective to be at all realistic. By adding the total hardware cost for each electrical component,

we can find the total cost of each sensor node is $250CAD [6, 12, 13, 15], the specific cost

breakdown is shown in table 3 below. The largest costs are associated with the microcontroller,

transmitter, and batteries. The price may be increased due to the current semiconductor shortage,

and we suspect the price will steadily drop over the coming months/years. Additionally, buying

components in bulk would considerably reduce the prices. Savings could also lie in purchasing

the batteries in a larger capacity directly from a wholesaler. This alone could drop the price by

~$75CAD. That being said, $250CAD per sensor is nearly three times our initial specification of

$100CAD, and this design does not consider the sensor housing construction.

Table 3: Ideal Sensor Design Summary

34

Conclusion

While there are many manufacturing facilities that have implemented Industry 4.0 sensor

technologies, there are still a select group that are not as modernized that this project would

fulfill a need for. For these production systems our sensor nodes could be implemented

seamlessly in addition to their existing layout. Our solution would be cost effective and easy to

integrate, making it a more appealing option for companies that do not want to invest into a more

costly revamp of their systems. The LPWAN network can be easily established with a few

gateways to connect all sensor nodes to the internet to be used for monitoring and/or data

collection and analysis.

The node proposed in this report is robust as it relies only audio data, which is readily available

and easy to collect in almost every setting (including non-industrial applications). Since it relies

only on audio data, there is precious little work to be done to integrate a network of our sensor

nodes when compared with the cost and labour associated with purchasing modern components

with their own integrated sensors. Our solution is as close to ready-out-of-the-box as one could

ask for.

Our sensor node is also extremely portable due to our use of machine learning. Because we have

laid the groundwork for ML algorithm implementation onboard a sensor node, all that’s required

to tune a node to a specific application is training data so that the node can accurately classify

events of interest. However, the use of ML techniques extends the utility of our node beyond

simple time-domain sequential events. For instance, a node could be used to detect faults when

listening to an operating motor and preemptively indicate to an operator that maintenance is

required.

Our proof of concept developed illustrates the sensor nodes viability in a manufacturing facility.

Over a relatively short duration of time, we developed a wireless sensor node that works in

accordance with periodic tasks to classify specific events using audio data alone. This data is

then used to directly tie to an existing control system where it can be used to alter the given

process. While further development is required to finalize each specific sensor node, this proof of

concept can serve as a launching point towards more feasible wireless sensor nodes in

manufacturing facilities.

35

Appendices

Appendix A

import numpy as np

import pyaudio

import wave

import matplotlib.pyplot as plt

import struct

from scipy.io import wavfile

import os

from sklearn.neural_network import MLPClassifier

from sklearn.neighbors import KNeighborsClassifier

from sklearn import linear_model

from sklearn import svm

import sklearn

import pandas as pd

from scipy.fftpack import fft,fftfreq

from scipy import signal

import math

from scipy.signal import butter, lfilter, freqz

import joblib

def butter_highpass(cutoff, fs, order=5):

 nyq = 0.5 * fs

 normal_cutoff = cutoff / nyq

 b, a = butter(order, normal_cutoff, btype='hp', analog=False)

 return b, a

def butter_highpass_filter(data, cutoff, fs, order=5):

 b, a = butter_highpass(cutoff, fs, order=order)

 y = lfilter(b, a, data)

 return y

def get_audio_data(rel_dir, en_filter = 1):

 width = 1000

 trim_value = 3750_00

 # data from audio files

 x = []

 # corresponding audio file class

 y = []

 # unique classes seen by the algorithm, for creating new classes

dynamically

 classes = {};

36

 for item in os.listdir(rel_dir):

 # unqique identifier for file name

 identifier = item[0:12]

 # IF statements used to determine if class has been seen before

 if identifier in classes.keys():

 # assign class key to the list of labels

 y.append(classes[identifier])

 else:

 # checks if any classes have been added yet

 if(classes):

 # add class file name identifier to the classes, assign index

one higher than maximum value present

 classes[identifier] = max(classes.values()) + 1

 else:

 classes[identifier] = 0

 # append new class to list of labels

 y.append(classes[identifier])

 samplerate, data = wavfile.read(f'{rel_dir}/{item}')

 #### ALL CODE BELOW IS DEDICATED TO FEATURE ENGINEERING

 # trim first 60k samples (shortly after clap)

 data = data[60000:]

 # mean center and scale data

 data = (data - data.mean()) / data.std()

 # filter using HPF

 if(en_filter):

 data = butter_highpass_filter(data, cutoff, fs, order);

 data = np.abs(data)

 # compresses data into bins to reduce dimentionality, works great

after filter

 data = data[:(data.size // width) * width].reshape(-1,

width).mean(axis=1)

 # If peak value < 0.36 must be ambient noise

 if (np.max(data) < 0.36 and en_filter): # 0.36 threshold

 data[:] = 0

 # looks at the data for the first non-zero value (first peak in wave)

 first_peak = 0

 for i in range(data.size):

 if(data[i] >= 0.35 and first_peak == 0):

 first_peak = i

 #trim from first peak onwards to end (sound runs long anways)

 data = data[first_peak:]

 data = data[:350]

37

 if(data.shape[0] < 350):

 print(item)

 y.pop(-1)

 else:

 x.append(data)

 return x, y

x, y = get_audio_data("./training")

nn = linear_model.LogisticRegression(solver = "liblinear")

df = pd.DataFrame(x)

df = df.apply(lambda row: row.fillna(row.mean()), axis=1)

x = df.to_numpy()

nn.fit(x,y);

df = pd.DataFrame(nn.coef_)

df.insert(0, "intercept", nn.intercept_)

display(df)

df.to_csv("ML_intercept_and_coefs.csv")

38

Appendix B

LoRaWAN RN2903 Python Scripting:

import rn2903

import time

import serial

import sys

import glob

list serial ports

print(rn2903.list_serial_ports())

open serial connection

con1 = rn2903.open('/dev/serial/by-id/usb-

Microchip_Technology_Inc._LoRa_Tech._PICtail_Board-if00')

print connection status

print(rn2903.status(con1))

devaddr = "c429fcbb"

nwkskey = "52cf3cf9982813369023cf2e716ebce7"

appskey = "f2c44bac845ad32f17ed292456d0d1e7"

rn2903.raw_command(con1, "sys reset")

time.sleep(2)

set device address

rn2903.command_response(con1, "mac set devaddr "+str(devaddr),"ok")

print("Device Address Set")

time.sleep(4)

set network session key

rn2903.raw_command(con1, "mac set nwkskey "+str(nwkskey))

print("Network Session Key Set")

time.sleep(4)

set app session key

rn2903.raw_command(con1, "mac set appskey "+str(appskey))

print("App Session Key Set")

time.sleep(4)

save mac settings

rn2903.raw_command(con1, "mac save")

time.sleep(4)

join activation by personalization (ABP)

rn2903.raw_command(con1, "mac join ABP")

print("ABP Joined")

print(rn2903.macRecBuf(con1))

time.sleep(4)

sys.stdout.flush()

39

loop forever

while 1:

 ** code for sending messages can be added here **

40

Appendix C

Python script for MQTT – OPC-UA connection:

'''

 Script to monitor a sensor and save MQTT messages, then upload to OPC-

UA server.

 Author: Jonathan Lake

 Date: 01/03/2022

'''

'''

 CAPSTONE PROJECT PIPELINE (simple):

 RASPBERRY PI sensor information (hex) -> TEKTELIC GATEWAY (base64) ->

HiveMQ Broker (base 64)

 |-> THIS script (base64 to hex conversion) -> HiveMQ (hex) and OPC-UA

(hex)

'''

python imports

from socket import timeout

import paho.mqtt.client as mqtt

import code

from opcua import Client

from opcua import ua

import time

import json

import sys

import base64

function for decoding base64 encoded messages

def decodePhyPayload(msg):

 # extract the physical payload from the message

 # and convert to hex

 PHYPayload = base64.b64decode(msg).hex()

 return PHYPayload

must be unique to other instances of this script that are running

simulataneously

client_name = "loraNode"

HiveMQ broker address

broker = "broker.hivemq.com"

push topic from Tektelic gateway

topic = "v2/pushCapstone"

create empty array for messages

msg_list = []

mqtt 'on connect' behavior function

def on_connect(mqttc, obj, flags, rc):

 if rc == 0:

 mqttc.connected_flag = True

41

 print("connected ok")

 else:

 print("bad connection. returned code = ", rc)

mqtt 'on subscribe' behavior function

def on_subscribe(mqttc, obj, mid, granted_qos):

 mqttc.subscribed_flag = True

 print("subscribed ok")

mqtt 'on message' behavior function

def on_message(mqttc, obj, msg):

 global msg_list

 print(1)

 msg_py = json.loads(msg.payload)

 msg_py["topic"] = msg.topic

 msg_py["qos"] = msg.qos

 print(json.dumps(msg_py, sort_keys=True, indent=4, separators=(',', ':

')))

 msg_list += [msg_py]

if __name__ == '__main__':

 # configure mqtt

 mqtt.Client.connected_flag = False

 mqtt.Client.subscribed_flag = False

 mqttc = mqtt.Client(client_name)

 # bind call back functions

 mqttc.on_connect = on_connect

 mqttc.on_subscribe = on_subscribe

 mqttc.on_message = on_message

 # set username and password

 mqttc.username_pw_set('', password='')

 # connect to broker

 print("connecting to broker " + broker)

 try:

 mqttc.connect(broker, 1883, 60) # connect to broker

 except:

 print("can't connect")

 sys.exit(1)

 mqttc.loop_start()

 while not mqttc.connected_flag:

 print("waiting for connection...")

 time.sleep(1)

 # subscribe to topic

 print("subscribing to topic " + topic)

 mqttc.subscribe(topic, 1)

 while not mqttc.subscribed_flag:

 print("waiting to subscribe...")

 time.sleep(1)

42

 # loop forever!

 num_msgs = 0

 try:

 while True:

 time.sleep(1)

 while msg_list != []:

 try:

 # get lora payload from msg

 RawPayload =

msg_list[0]['0004A30B001A820C'][0]['values']['nsRawPayload']

 except KeyError:

 # handle exception

 print("Key not found.")

 # decode payload

 DecodedPayload = decodePhyPayload(RawPayload)

 # print decoded payload

 print("Decoded Payload: ", DecodedPayload)

 # publish decoded payload to HiveMQ broker

 mqttc.publish("v1/pull", DecodedPayload, 0,

True)

 # remove the processed message

 msg_list = msg_list[1:]

 # set OPC-ua client address

 client = Client("opc.tcp://192.168.0.1:4840/")

 try:

 # connect to client

 print("connecting to OPC-UA client...")

 client.connect()

 print("connected ok")

 # get node value

 PLCstate_node =

client.get_node('ns=3;s="OPC"."PLCstate"')

 PLCstate = PLCstate_node.get_value()

 # set node value

 var1_setValue =

ua.DataValue(ua.Variant(int(DecodedPayload,16),

PLCstate_node.get_data_type_as_variant_type()))

 PLCstate_node.set_value(var1_setValue)

 # print new value

 print("Posted Value: ",

int(DecodedPayload,16))

 except timeout:

 print("connection timed out")

 finally:

 # disconnect from client

43

 try:

 client.disconnect()

 print("disconnected ok")

 except AttributeError:

 print("OPC-UA client not

connected")

 except KeyboardInterrupt: # Ctrl-c to quit

 print("stopping client loop")

 mqttc.loop_stop()

 print("disconnecting from broker " + broker)

 mqttc.disconnect()

JSON packet received from MQTT broker:

{

 "0004A30B001A820C": [

 {

 "ts": 1649622813697,

 "values": {

 "bytes": "[61]",

 "nsFCount": 249,

 "nsFPort": 2,

 "nsGateway": "647fdafffe00511d",

 "nsGatewayCount": 1,

 "nsGwId": "bff4f970-aa3d-11e8-9876-a36e3fbec477",

 "nsRawPayload": "AQ==",

 "nsRssi": -117,

 "payload length": 1,

 "port": 2

 }

 }

],

 "qos": 1,

 "topic": "v2/pushCapstone"

}

44

Appendix D

import time

import serial

import sys

import rn2903

import pyaudio

import wave

import numpy as np

from scipy.signal import butter, lfilter, freqz

import joblib

from sklearn import linear_model

import pandas as pd

def butter_highpass(cutoff, fs, order=5):

 nyq = 0.5 * fs

 normal_cutoff = cutoff / nyq

 b, a = butter(order, normal_cutoff, btype='hp', analog=False)

 return b, a

def butter_highpass_filter(data, cutoff, fs, order=5):

 b, a = butter_highpass(cutoff, fs, order=order)

 y = lfilter(b, a, data)

 return y

def feature_extraction(data):

 # Filter requirements.

 order = 6

 fs = 48000 # sample rate, Hz

 cutoff = 150 # desired cutoff frequency of the filter, Hz

 width =1000

 trim_value = 375000

 print("start")

 data = np.array(data)

 print("np array")

 data = data[60000:]

 print("cutoff")

 # mean center and scale data

 data = (data - data.mean()) / data.std()

 print("mean centered")

 # filter using HPF

 data = butter_highpass_filter(data, cutoff, fs, order);

 data = np.abs(data)

45

 print("filtered data")

 # compresses data into bins to reduce dimentionality, works great after

filter

 data = data[:(data.size // width) * width].reshape(-1,

width).mean(axis=1)

###

#########

 if (np.max(data) < 0.36):

 data[:] = 0

 first_peak = 0

 for i in range(data.size):

 if(data[i] >= 0.5 and first_peak == 0):

 first_peak = i

 #trim from first peak onwards to end (sound runs long anways)

 data = data[first_peak:]

 # trims from end to have normalized size, scaled by width to

accomidate different binning

data = data[:int(trim_value/width)]

 data = data[:350]

 if(data.shape[0] < 350):

 x = np.zeros(350)

 else:

 x = np.array(data)

 return x

print(rn2903.list_serial_ports())

#con1 = rn2903.open('/dev/ttyACM0')

con1 = rn2903.open('/dev/serial/by-id/usb-

Microchip_Technology_Inc._LoRa_Tech._PICtail_Board-if00')

print(rn2903.status(con1))

form_1 = pyaudio.paInt32 # 16-bit resolution

chans = 1 # 1 channel

samp_rate = 48000 # 44.1kHz sampling rate

CHUNK = 24000 # 2^11 samples for buffer

dev_index = 2 # device index found by p.get_device_info_by_index(ii)

RECORD_SECONDS = 500

audio = pyaudio.PyAudio() # create pyaudio instantiation

46

flag = True

stream = audio.open(format = form_1, rate = samp_rate, channels = chans,

input_device_index = dev_index, input = True, output = False,

frames_per_buffer = CHUNK)

print("recording")

frame1 = []

df = pd.read_csv("ML_intercept_and_coefs.csv")

df.drop(columns=df.columns[0], axis=1, inplace=True)

intercepts = df["intercept"].values

df.drop(columns=df.columns[0], axis=1, inplace=True)

coefs = df

coefs = coefs.values

channel_count = 0

for i in range(0, int(samp_rate / CHUNK * RECORD_SECONDS)):

 data = stream.read(CHUNK,exception_on_overflow = False)

 data = np.frombuffer(data, np.int32)

 frame1.append(data)

 temp = []

 timeElapsed = i / 2 +.5

 print(timeElapsed)

 if(timeElapsed % 20 == 0):

 if(i != 0):

 toClassify = frame1

 for i in toClassify:

 for j in i:

 temp.append(j)

 print("Frame 1 length {}".format(len(toClassify)))

 frame1 = []

 if(len(temp) != 0):

 data = feature_extraction(temp)

 probs = {}

 keys = [0, 1, 2, 3]

 for key in keys:

 summer = intercepts[key]

 for i in range(len(coefs[key])):

47

 summer = summer + coefs[key][i] * data[i]

 probs[key] = summer

 print(probs)

 max_key = -1

 max_val = -9999999

 for key,value in probs.items():

 if(value > max_val):

 max_key = key

 max_val = value

 name_map = {

 0: "Ambient",

 1: "Consecutive",

 2: "Lid On",

 3: "Lid Off"

 }

 print(name_map[max_key], max_val)

 channel_map = {0:1, 1:5, 2:7}

 channel_selected = channel_map[channel_count % 3]

 channel_count = channel_count + 1

 print("Channel selected: " + str(channel_selected))

 print("Sent Msg Response: ", rn2903.raw_command(con1,"mac tx cnf " +

str(channel_selected) + " " + str(max_key)))

 time.sleep(3)

 while(rn2903.macRecBuf(con1) != "mac_err"):

 time.sleep(0.1)

 sys.stdout.flush()

48

Appendix E

The following is a calculation of the theoretical battery life of the sensor node. The total power

draw from the sensor can be calculated by adding the power draw from each individual

component. We can let P equal this sum. P is calculated as follows:

𝑃 = 2.25mW + 1mW + 5mW = 8.25𝑚𝑊

Given the battery has an energy rating of 273.6W⋅hr, we can calculate the life span as follows:

Battery Life =
273.6𝑊ℎ

8.25𝑚𝑊
×

1day

24ℎ𝑟
×

1𝑦𝑟

365days
= 3.8𝑦𝑟

Thus, the battery life is 3.8 years.

49

References

[1] - “PDF.” LoRa Alliance, San Ramon, Nov-2015.https://lora-alliance.org/wp-

content/uploads/2020/11/what-is-lorawan.pdf

[2] - S. Selcuk, “Predictive maintenance, its implementation and latest trends,” Proceedings of

the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, vol.

231, no. 9, pp. 1670–1679, 2016. https://doi.org/10.1177%2F0954405415601640

[3] - SEMTECH, “LoRa Technology: Remote and Real-time Acoustic Monitoring.” 2018.

https://www.semtech.com/uploads/technology/LoRa/app-briefs/Semtech-UseCase-

Calgary-UrbanAlliance-web.pdf

[4] - Cihun-Siyong Alex Gong, Huang-Chang Lee, Yu-Chieh Chuang, Tien-Hua Li, Chih-Hui

Simon Su, Lung-Hsien Huang, Chih-Wei Hsu, Yih-Shiou Hwang, Jiann-Der Lee, Chih-

Hsiung Chang, "Design and Implementation of Acoustic Sensing System for Online

Early Fault Detection in Industrial Fans", Journal of Sensors, vol. 2018, Article ID

4105208, 15 pages, 2018. https://doi.org/10.1155/2018/4105208

[5] - S. Zhang, et al., Design of axle-temperature detect system based on wireless sensor network

(in Chinese), Modern Electronics Technique (3) (2008), pp. 86-88.

https://en.cnki.com.cn/Article_en/CJFDTotal-XDDJ200803030.htm

[6] - A. Industries, “Adafruit I2S MEMS microphone breakout - SPH0645LM4H,” adafruit

industries blog RSS. [Online]. Available: https://www.adafruit.com/product/3421.

[7] - Hochreiter, Sepp & Schmidhuber, Jürgen. (1997). Long Short-term Memory. Neural

computation. 9. 1735-80. 10.1162/neco.1997.9.8.1735.

[8] - “MQTT - The Standard for IoT Messaging”, Mqtt.org, 2022. [Online]. Available:

https://mqtt.org/.

[9] - Raspberry Pi, “Buy A raspberry pi 3 model B,” Raspberry Pi. [Online]. Available:

https://www.raspberrypi.com/products/raspberry-pi-3-model-b/.

50

[10] - A. Hero, “Nyquist Sampling Theorem.”

https://www.eecs.umich.edu/courses/eecs206/archive/f02/public/lec/lect20.pdf

[11] - “EEMBC,” CPU Energy Benchmark – MCU Energy Benchmark – ULPMark™ –

EEMBC Embedded Microprocessor Benchmark Consortium. [Online]. Available:

https://www.eembc.org/ulpmark/ulp-cp/scores.php.

[12] - “RSL10-002GEVB”, DigiKey. [Online]. Available:

https://www.digikey.ca/en/products/detail/onsemi/RSL10-002GEVB/7942070

[13] – “EEMB 3.6 V D Size Lithium Battery ER34615 19000 mAh Li SOCL2 UL Certified Non

Rechargeable 3.6 Volt Lithium Thionyl Chloride Battery”, Amazon Canada. [Online].

Available: https://www.amazon.ca/EEMB-Lithium-Certified-Rechargeable-

Chloride/dp/B075ZPXG6M/ref=sr_1_3?crid=2HQTW1MCZXUGA&keywords=lithium

%2Bthionyl%2Bchloride&qid=1649088083&s=electronics&sprefix=%2Celectronics%2

C184&sr=1-3&th=1

[14] - “What are lithium thionyl chloride batteries? main advantages,” Tadiran Batteries.

[Online]. Available: https://tadiranbatteries.de/lithium-thionyl-chloride/.

[15] - “RN2903A-I/RM103,” DigiKey. [Online]. Available:

https://www.digikey.ca/en/products/detail/microchip-technology/RN2903A-I-

RM103/8019733.

[16] - “RN2483A-I/RM105,” DigiKey. [Online]. Available:

https://www.digikey.ca/en/products/detail/microchip-technology/RN2483A-I-

RM105/9867251.

[17] - “ABP vs OTAA”, Thethingsindustries.com, 2022. [Online]. Available:

https://www.thethingsindustries.com/docs/devices/abp-vs-otaa/.

